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1. Introduction 

This report provides an introduction to sea level changes over time.  The report draws upon the 
most recent publications of the Intergovernmental Panel on Climate Change (IPCC), the 
Commonwealth’s Scientific and Industrial Research Organisation (CSIRO), the Bureau of 
Meteorology (BOM) and other recent scholarly peer-reviewed publications to present the current 
science and future projections for sea levels on the NSW coast.  The sea level rise projections 
presented in this report will be used as reference data within web based tools to be released by 
the NSW Office of Environment and Heritage (OEH)/Adapt NSW for coastal zone planning. 
 
The report is structured to allow the reader to progress through background content on the 
causes, trends and projected values of sea levels in NSW.  The report has been arranged as 
follows: 
 

Section 2 provides an introductory background to the natural processes affecting regional 
sea levels over various time scales. 
 
Section 3 summarises research regarding the observed changes to sea levels during the 20th 
century in a global, Australian and NSW context. 
 
Section 4 provides an overview of the latest climate modelling undertaken by the 
Intergovernmental Panel on Climate Change (IPCC) and presents recent projections of sea 
levels for the 21st century along the NSW coast. 
 
Section 5 provides a summary of the factors to consider when calculating sea levels for 
coastal zone management and planning.  This includes the consideration of both the open 
coast and estuaries. 

 
The following report has been prepared by scientist within NSW’s Office of Environment and 
Heritage’s Adaptation Research Hub (Coastal Processes and Responses Node).  Various 
independent scientist and engineers have contributed including staff from the UNSW Australia 
Water Research Laboratory (within the School of Civil and Environmental Engineering), the 
Australian Climate Change Adaptation Research Network for Settlements and Infrastructure 
(ACCARNSI), CSIRO and the Sydney Institute of Marine Science (SIMS). 
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2.2 Astronomical Tides 

Sea levels fluctuate daily with the tide.  Tides are caused by the gravitational attraction between 
the sun, moon, and the rotating earth, which generates forces on the ocean.  Along the NSW 
coast, tides are semi-diurnal, that is, there are two high and two low tides each day.  Semi-
diurnal tides are modulated (or varied) over a range of time scales, including systematic 
monthly, annual and inter-annual variations (MHL, 2013). 
 
The most common modulation is known as the spring/neap tidal cycle, which occurs during a 28-
day lunar phase (Masselink et al., 2014).  During a spring tide there is a larger (than average) 
increase in the gravitational force on the ocean, which causes an increase in the difference 
between the high and low tide levels (i.e. tidal range).  During a neap tide cycle, a weaker 
gravitational force on the ocean results in a smaller tidal range.  In addition to the spring/neap 
tidal cycles, the earth’s tilt (of approximately 23.5 degrees) causes a shift in the tidal range 
which results in king tides during the annual summer/winter seasonal cycles.  In the southern 
hemisphere, king tides occur in December/January (day-time) and in June/July (night-time) 
(Couriel et al., 2014). 
 
Additional inter-annual modulations include the 18.6 year lunar nodal cycle and the 8.85 year 
lunar perigee (which affects high tide levels as a quasi 4.4 year cycle) (Haigh et al., 2011).  
These longer term cycles are difficult to identify within shorter tidal records (MHL, 2011).  Haigh 
et al. (2011) suggests that the influence of the 18.6- year lunar cycle is not very significant 
along the NSW coast. 
 

2.2.1 NSW Tidal Planes 

Tidal ranges can vary along the NSW coast by up to ± 0.2 m (MHL, 2011).  Smith and Davey 
(2013) highlighted the importance of considering site specific tidal planes when interpreting sea 
levels at a local scale.  Table 1 provides an example of the tidal water level variability along the 
NSW coast. 

Table 1: Tidal Planes for Three Select Locations on the NSW Coast (Australian Hydrographic 
Service, 2011) (after SMEC, 2013) 

Tidal Plane 
Water Level (m AHD) 

Yamba  
(North Coast) 

Sydney 
Eden  

(South Coast) 
Highest Astronomical Tide (HAT) 1.01 1.18 1.18 
Mean High Water Springs (MHWS) 0.64 0.69 0.64 
Mean High Water Neaps (MHWN) 0.38 0.44 0.44 
Mean Sea Level (MSL) -0.04 0.06 0.07 
Mean Low Water Neaps (MLWN) -0.30 -0.32 -0.30 
Mean Low Water Springs (MLWS) -0.63 -0.57 -0.51 
Lowest Astronomical Tide (LAT) -0.90 -0.92 -0.92 

* AHD is the Australian Height Datum where 0 m AHD is approximately mean ocean level 
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2.4.1 Wave Set-up 

Shoaling occurs as waves enter shallower water.  The shoaling process causes waves to 
decrease in speed and wave length with increasing wave height until ultimately they break.  
Inshore of the break point a local increase in water level, known as wave set-up, occurs (Figure 
2).  Wave set-up can result in the elevation of the sea above mean water levels, particularly 
near the beach face.  Typical values for wave set-up in NSW are provided in Table 2. 
 

2.4.2 Wave Run-up 

Wave run-up occurs when breaking waves surge up the beach face (Figure 2).  Wave run-up is a 
function of beach profile, surface roughness, and other shoreline features affecting breaking 
waves at a particular site.  Wave run-up is a dynamic process and varies on a wave by wave 
basis.  For steeper slopes, such as at rock shelves, cliffs, structures such as wharves, jetties, 
breakwaters and seawalls, waves may dissipate their energy more rapidly. The level of run-up 
and overtopping depends on the water depths fronting the structure, the slope, height and other 
geometric attributes of the structure as well as its permeability.  Typical values for wave run-up 
in NSW are provided in Table 2. 
 

Table 2: Elevated Water Level Components Due to Storm Events (after NSW Government, 1990 
with updates) 

Component Typical Range (m) Additional Comments 

Barometric set-up 0.1 – 0.4 Barometric set-up can cause a 0.1 m 
increase in water level for every 10 hPa 
drop below 1013 hPa (i.e. average 
atmospheric pressure).  Storm surge (the 
combination of barometric and wind set-up) 
can raise coastal water levels in NSW by up 
to 0.5 m (Couriel et al., 2014). 

Wind set-up 0.1 - 0.2 

Wave set-up 0.7 - 1.5 

Measurements taken on open coast 
beaches in NSW suggest that a wave set-
up of up to 1.5 m can be expected at the 
shoreline during serve storm events 
(Nielsen, 2010). 

Wave run-up 3.0 - 6.0 

Design levels for wave run-up on open 
coast beaches in NSW exposed to waves 
may be up to 10 m AHD (Coghlan et al., 
2012).   

 

2.5 Other Sea Level Anomalies 

Sea level anomalies (often referred to as tidal anomalies) describe the differences between the 
actual water level and the predicted tidal water level(s).  Anomalies can include a combination of 
short-term factors, such as variations in seasonal temperature, air pressure, wind stress, and 
coastal-trapped waves and longer term effects caused by variations in global atmospheric and 
oceanic patterns.  A comprehensive summary of sea level anomalies along the NSW coastline is 
discussed in Modra and Hesse (2011).  MHL (2015) showed that sea level anomalies of up to 
0.5 m can occur during the course of an event.  Details of the most common sea level anomalies 
in NSW are discussed below. 
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2.5.1 Ocean Density Changes 

Heat and freshwater exchange between the ocean surface and the atmosphere can change the 
density of the ocean and result in sea level variations.  Changes in ocean density leading to 
changes in sea level is known as the Steric Effect.  Steric variability occurs over regional scales 
(1,000 km or larger) (Siedler et al., 2001) and results in seasonal to inter-decadal sea level 
variations.  Steric Effects also occur on smaller spatial scales.  For example, the warm waters of 
the Eastern Australia Current (EAC) have been shown to raise local sea levels from 0.3 to 0.5 m 
for sustained periods at Lord Howe Island and Norfolk Island (Couriel et al., 2014).  On the NSW 
coast, temperature variations from the East Australian Current can lead to sea level variations of 
up to 0.4 m (SCC & CSIRO, 2012). 
 

2.5.2 Coastal Trapped Waves 

Coastal trapped waves are caused by meteorological disturbances and can travel along 
continental shelves freely in the absence of wind effects (SCC & CSIRO, 2012).  Coastal trapped 
waves are episodic events with a typical period of one to two weeks with the wave travelling 
clockwise around land masses in the southern hemisphere.  The magnitude of coastal trapped 
waves is closely correlated with the strength of the alongshore winds and the width of the 
continental shelf and is largest along the south coast of Australia with amplitudes up to 0.70 m 
(Woodham et al., 2013).   
 
The NSW coast has been the site of major international studies of coastal trapped waves (Church 
et al., 1986; Freeland et al., 1986; Church and Freeland, 1987).  In NSW, these waves may 
originate in the Bass Strait but more commonly propagate from the Great Australian Bight, 
through Bass Strait, and northwards along the NSW coast.  Early research suggested coastal 
trapped waves were responsible for sea level anomalies of up to 0.2 m along the east coast 
(Freeland et al., 1986; Couriel et al., 2014).  Larger coastal trapped waves are thought to be 
associated with the reinforcement by strong wind forcing on the southern part of the east coast 
and/or Bass Strait (Maiwa et al., 2010; Woodham et al., 2013).  Recent research suggests that 
coastal trapped waves reinforced by these winds may have magnitudes as high as 0.5 m on the 
NSW coast (MHL, 2015).  However, further research work is needed to characterise coastal 
trapped waves in NSW and develop annual recurrence intervals. 
 

2.5.3 El Niño - Southern Oscillation 

The El Niño – Southern Oscillation (ENSO) refers to the periodic change in atmospheric and 
oceanic patterns (on time scales typically between two to seven years) in the tropical Pacific 
Ocean (BOM, 2007).  During El Niño events, there is an eastward shift of the warmest waters in 
the tropical Pacific Ocean, resulting in higher than normal sea levels and warmer than normal 
sea surface temperatures in the central and eastern Pacific and lower sea levels in the west.  The 
opposite phase of El Niño, called La Niña, is characterised by colder ocean temperatures and 
lower sea levels in the eastern tropical Pacific Ocean and higher sea levels in the west.  Sea level 
anomalies around Australia are strongly correlated with ENSO, decreasing in magnitude with 
distance (anticlockwise around the coast) from Darwin (White et al., 2014).  ENSO may affect 
coastal water levels through a range of mechanisms including the pressure difference across the 
Pacific, trade wind strength, frequency and severity of storms, sea surface temperatures and the 
East Australian Current (MHL, 2011). The associated water level changes along the NSW 
coastline due to ENSO have been estimated at around ± 0.1 m (NSW Government, 1990). 
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2.5.4 Inter-decadal Pacific Oscillation (IPO) 

The Inter-decadal Pacific Oscillation (IPO) is based on water temperatures in the mid-latitude 
Pacific basin and is associated with long-period variations in atmospheric pressure and sea 
surface temperature, with time scales of 20 to 50 years.  During the positive phase of the IPO, El 
Niño-like conditions are commonly observed and sea levels in Eastern Australia are lower than 
average.  However, during the negative phase of the IPO, La Nina-like conditions prevail and sea 
levels are higher than average.  During the 20th century, the IPO was in a positive phase from 
1922 to 1946 and 1978 to 1998, and in a negative phase between 1947 to 1976.  As a result, it 
is difficult to assess the impact of the IPO on sea level predictions from observations alone since 
the analysis would require long-term observations of water level data over several IPO cycles. 
 

2.6 Long-Term Contributors to Sea Level Change 

The Earth’s climate is complex and influenced by both natural and anthropogenic (human 
induced) processes.  Regardless of the cause, changes in climate, in particular changes to global 
temperatures, have significant consequences for long-term mean sea levels.  CSIRO & BOM 
(2015) summarise the main long-term contributors to sea level change, including: 
 
1. Changes in the density of the ocean from thermal effects; 
2. Changes in the mass of the ocean from glacial mass loss; and 
3. Changes to the freshwater storage in the terrestrial environment. 
 
The dominant cause of sea level change in the 20th Century has been due to the thermal 
expansion of oceans and glacial mass loss with smaller contributions from the ice sheets in 
Greenland and Antarctica (Church et al., 2013).  Sea level rise from loss of mass from glaciers or 
ice sheets is non-uniform due to changes in the Earth’s gravitational field, Earth’s rotation and 
vertical land motion. 
 

2.6.1 Glacial Isostatic Adjustment 

The Glacial Isostatic Adjustment (GIA) refers to the ongoing vertical movement of the land 
surface and changes in the earth’s rotation following relief from extreme overburden pressures 
caused by thick ice sheets from the last ice age (approximately 20,000 years ago) (Peltier, 
2001).  As a result of GIA, regional sea levels are falling in locations of former ice sheets, as the 
land mass rebounds upwards relative to the sea  (Figure 3).  It is worth noting that GIA occurs 
in addition to tectonic movements or local land subsidence.  GIA is not uniform across the globe.  
Sea level relative to the land mass immediately adjacent to the former ice sheets, which was 
subject to more pressure, is rising faster than the global average, whereas sea level relative to 
the land distant from the former ice sheets (such as Australia) is rising less rapidly than the 
global average (Church et al., 2013). 
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3. Summary of Observed Sea Level Rise 

3.1 Preamble 

Observed sea level trends have been the topic of extensive research.  It is now broadly accepted 
that global sea levels have risen over the past two centuries (Church et al., 2013).  Following a 
relatively stable period (several thousand years in the case of Australia), global sea levels began 
to rise during the 19th century and have continued to rise throughout the 20th century (CSIRO & 
BOM, 2015).  The rate of rise over the 20th century was an order of magnitude larger than the 
rate of rise over the two millennia prior to the 18th century (Masson-Delmotte et al., 2013). 
 
Current literature reviewed below includes the research of Couriel et al. (2014), White et al. 
(2014), Burgette et al. (2013), Rhein et al. (2013), and Church and White (2011) to summarise 
observed sea level rise trends in NSW. 
 

3.2 Global and Regional Distribution of Sea Level Rise 

Sea levels can vary significantly on global and regional scales due to the relative influence and 
superposition of the various processes identified in Section 2.  The combination of these 
processes produces a complex pattern of total sea level change that varies through time.  As 
such, it is important to recognise that while global mean values of sea levels can be a useful 
indicator of sea level rise trends, regional factors can contribute to sea level rise and significantly 
influence observations and projections on a local scale.  This may result in local trends that differ 
from global mean values (IPCC, 2014a). 
 

3.2.1  Global Sea Level Trends 

Rhein et al. (2013), in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on 
Climate Change (IPCC), reports that global mean sea levels have risen by between 0.17 to 
0.21 m over the period of 1901 to 2010.  The IPCC AR5 assessment was based on multiple 
studies (with high agreement), independent observations, and analysis of long-term tide gauge 
records from around the world.  A summary of global mean sea level trends over different inter-
decadal time periods from IPCC AR5 is provided in Table 3.  The mean rate of sea level rise 
during 1901 to 2010 was between 1.5 to 1.9 mm per year, and has since increased to between 
2.3 to 3.3 mm per year for the period 1993 and 2010 (Rhein et al., 2013).  Global mean sea 
levels between 1950 and 2010 , as reported by the IPCC, are provided in Figure 5.  A recent 
analysis has suggested an annual sea level rise rate from 1993 to mid-2014 of 2.6 ± 0.4 to 2.9 
± 0.4 mm per year, which is marginally lower than the IPCC estimate (Watson et al., 2015).  
These results signify that the rate of global mean sea level rise is spatially variable and reliable 
estimates of future sea level rise trends cannot be made by extrapolating historical observations 
(Church and White, 2011). 
 

Table 3: Trends in Global Mean Sea Level (after Table 3.1 Rhein et al., 2013) 

Period Sea Level Trend (mm per year) 

1901-2010 1.7 [1.5 - 1.9] 
1901-1990 1.5 [1.3 - 1.7] 
1971-2010 2.0 [1.7 - 2.3] 
1993-2010 2.8 [2.3 - 3.3] 

Note: Uncertainty range provided represents the 90% confidence interval. 
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Denison in Sydney (1886) and Fremantle in Western Australia (1897) (CSIRO & BOM, 2015).  
There have been two comprehensive assessments (Burgette et al., 2013; White et al., 2014) of 
20th century sea level change around the Australian coastline, from which the following section 
has been summarised. 
 
The two longest tide gauge records (Fremantle and Sydney) reveal rising sea levels prior to 
1960, relatively stable sea level rise rates between 1960 and 1990, followed by an increased 
rate of rise from the early 1990s (White et al., 2014).  White et al. (2014) analysed tide data for 
a 45 year period between 1966 to 2010.  This was the longest period for which data is available 
around the whole country.  White et al. (2014) demonstrated that there is significant variability 
in sea levels from year to year and there is a strong impact of interannual to decadal variability 
on Australian sea levels (much of which is related to the Southern Oscillation Index and the 
Pacific Decadal Oscillation). 
 
The work of White et al. (2014) indicates that the spatial scale of the variability in regional mean 
sea level is in the order of thousands of kilometres.  White et al. (2014) reported that for the 
period between 1966 to 2009, (when there are observations of most sections of the Australian 
coastline), the average rate of relative sea level rise around Australia was 1.4 ± 0.2 mm per 
year, which is slightly less than the global averaged rise for the same period (CSIRO & BOM 
(2015).  This slightly smaller rate is partly due to the ongoing vertical adjustment of landmass 
(GIA) and partly due to the increase in atmospheric surface pressures (which had a depressing 
impact on sea level) at various locations around Australia.  If it were not for these factors, the 
average trend would be 2.1 ± 0.2 mm per year (ranging from 1.3 mm per year at Sydney to 3.0 
mm per year at Darwin), which is almost equivalent to the global averaged value of 2.0 ± 0 .3 
mm per year (over the same period) (White et al., 2014). 
 
White et al. (2014) also highlighted that whilst there is an extensive network of tide gauges  
across Australia, most individual tide gauge records are too short and contain too much 
variability for detection of statistically significant accelerations of sea level rise.  Ideally, tide 
gauge records need to be long enough to capture significant instances of long period climatic and 
astronomic cycles (such as ENSO, IPO, 18.6 year Lunar cycle etc.) if they are to be used as the 
sole indicator of local sea level rise (Haigh et al., 2014).  As such, it is important to consider 
both regional spatial scales (of the order of 100 km and larger) and observations from several 
tide gauges (of adequate time length) instead of single measurements from a local gauge to 
assess sea level rise trends. 
 
In general, the rates of sea level rise measured offshore by satellites is similar to the rate 
measured by coastal tide gauges around the Australian coastline.  The major exception to this 
finding was off the southern NSW coast where the offshore rate of rise is larger than that at the 
coast.  This difference is attributed to a strengthening of the East Australian Current in this 
region (Hill et al., 2008; Deng et al., 2011).  For the period of high-quality satellite-altimeter 
data (since 1993), sea levels around Australia have been rising at close to the global average 
rate in the south and south-east (the NSW coast) and above the global average in the north and 
north-west (Deng et al., 2011; Haigh et al., 2011). 
 

3.2.3 Sea Level Trends in NSW 

Couriel et al. (2014) summarised yearly average relative sea levels for various gauged locations 
along NSW (presented to a common datum relative to Fort Denison) as shown in Figure 6.  This 
data shows that sea levels rise and fall over a multitude of time scales, which masks longer term 
trends, especially for shorter tidal records.  Over longer periods, these trends become more 
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4. Projected Sea Level Rise 

4.1 Preamble 

The IPCC is the international body for assessing the science related to climate change.  The IPCC 
was set up in 1988 (by the World Meteorological Organisation and United Nations Environment 
Programme) to provide policymakers with regular assessments of the scientific basis of the 
Earth’s climate (IPCC, 2014a).  Due to the immense spatial and temporal scales over which the 
different climatic factors take effect, the future climate system cannot be studied using physical 
or experimental methods alone.  As such, researchers have also used numerical simulations, 
which include mathematical representations of processes important in the Earth’s climate 
system, to explore the earth’s climate changes with time. 
  
The following sections draw upon the background material of the IPCC Fifth Assessment Report 
(AR5) (Stocker et al., 2013) and selected publications since AR5, to provide a summary of the 
most recent literature relating to sea level rise trends expected in the 21st Century.  The sea 
level rise magnitudes quoted in this section are based upon the most recent analysis of the 
general circulation models (GCMs) developed by modelling experts from around the world 
through the “Coupled Model Intercomparison Project phase 5” (CMIP5).  These results have been 
summarised by CSIRO and the Australian Bureau of Meteorology (BOM) as part of a larger 
package of products for assessing risks of regional climate change due to global warming (CSIRO 
& BOM, 2015). The NSW Government has also assessed regional climate change through the 
“NSW and ACT Regional Climate Model” (NARCliM) project, with results available via the Adapt 
NSW web portal. 
 

4.2 Climate Models 

The future rise in the magnitude of global mean sea level is one of the most certain 
consequences of climate change (Haigh et al., 2014).  That being said, the interactions of 
physical processes that drive the changes are highly complex.  This means that to gain an 
understanding of possible effects into the future, climate models need to be developed and 
tested for their ability to replicate current observations of climate variables (NSW CS&E, 2012). 
 
In general, global climate models are used for three main purposes.  They are used to 
understand the present climate, they are used to project climatic conditions into the future, and 
finally, they are a tool to assess the potential impacts of human activities on a future climate 
(OCCRI, 2010).  Even though climate modelling has existed since the 1950’s, the understanding 
of physical climate processes (and modelling of those processes) to predict sea levels is an 
evolving research field (McGuffie and Henderson-Sellers, 2001).  The complexity and resolution 
of global climate models have increased over time as the understanding of climate processes and 
computing power has improved.  To date, there exists an immense volume of literature to 
describe the physical mechanisms and progression of climate models (Flato et al., 2013). 
 
With particular reference to modelling global sea levels, the AR5 climate models focus on 
processes within the ocean, atmosphere, land ice, and hydrological cycle that are climate 
sensitive and expected to contribute to sea level change, at regional to global scales in the 
coming decades to centuries (Church et al., 2013).  These processes are represented in Figure 7. 
  



 

FINA

Fig

 
The
leve
whic
info
 
Proc
cont
fund
(the
shee
mov
obse
prin
(Chu
of s
back
“Evo
 

4.2.

The 
gree
use 
chan
enco
hav
supp
Prev
pred
eva
cond
 
 

AL   June 2016

gure 7: Clima

re are two m
el change.  T
ch cause se
rmation con

cess based 
tribute to 
damentally d
ermal expan
ets on Green
vements of t
erved global

ncipals that 
urch et al., 2
semi-empiric
kground det
olution of Cli

.1 Repre

 magnitude 
enhouse gas
 of “emissio
nges into t
ouraged the
e been dev
ported the 
viously clima
diction of tot
luation of t
ditions) (Jub

6 

ate Sensitive

main types 
The first is 
ea levels to
tained in me

models aim
sea level r
different wa
sion); additi
nland and A
the Earth's c
l temperatur
sea levels 
2013) found
cal models 
tails on clim
imate Model

esentative C

 of climate c
s emissions. 
ons scenario
the future (
e developme
eloped to re
increasing 

ate scenario 
tal greenhou
the climate 
bb et al., 201

e Processes 

of climate m
process-bas
o rise, and 
easurements

m to descri
rise.  These
ys; changes
ion of mass 
ntarctica); a
crust).  Sem
re changes f
rise faster 

d there was n
and low co

mate modell
s” (Flato et 

Concentrati

change (and
  Since exten
os” are req
(Moss et al
nt of severa
eflect the a
sophisticatio
 developmen
use gas and 
systems (w

13). 

 and Compon
13.1 IPCC, 2

models that 
sed models t
 the secon
s of past sea

be quantita
e models c
s to the vol
 primarily fr
and the chan

mi-empirical 
from the pas
as the tem
no consensu
onfidence in
ling, refer t
 al., 2013). 

tion Pathwa

d sea level r
nsive uncert
quired to pr
l., 2010).  
al scenarios 
dvances in 
on of the c
nt involved t
 aerosol em
which result

nents that In
2014a) 

are conside
that conside
d is semi-e

a level chang

atively the 
characterise 
ume of the 

rom loss of l
nging in dep
models try t
st to predict
perature inc

us in the scie
n projection
to chapter 9

ays (RCPs) 

rise) is depe
tainties exist
redict social
Over the 

 for use in c
research ov

climate mod
the assessm
issions (tha
ts from mo

nfluence Sea 

red by the I
er the differe
empirical m
ge. 

different ph
 global sea
 existing oce
and ice (i.e.
ths of the g
to link obser
t the future, 
creases (Ra
entific comm
ns based on
9 of the AR

 

ndent on th
t in future cl
, technolog
last two de
climate resea
ver the rele
dels (Van V
ent of socio
t arise from 
delling the 

 Level Trend

IPCC in proj
ent physical
odels, whic

hysical proc
a level rise
ean mass b
. from glacie

global ocean 
rved sea lev
 based on th

ahmstorf, 20
munity on the
n them.  F
R5 report e

he magnitud
imate intera
ical and de

ecades, the 
arch.  These

evant period
Vuuren et a
o-economic f
 the scenari
changed at

16 

 
ds (Figure 

jecting sea 
 processes 
h use the 

esses that 
e in three 
y warming 
ers and ice 
 basins (by 
vel rise and 
he physical 
012). IPCC 
e reliability 
For further 
ntitled the 

e of future 
actions, the 
emographic 
 IPCC has 
e scenarios 
 and have 
al., 2011).  
factors, the 
o) and the 
tmospheric 

 



 

 
FINAL   June 2016 17 

The most recent modelling (as used in the AR5) project adopts a different approach where the 
scenarios are represented as greenhouse gas and aerosol concentrations resulting from different 
emission rates (rather than socio-economic scenarios that give rise to different emission 
concentrations, as assumed in AR4).  These new scenarios are referred to as Representative 
Concentration Pathways (RCP) and are named according to their “radiative forcing” target level 
for 2100 (IPCC, 2014b).  The radiative forcing estimates are based on greenhouse gases and 
other forcing agents (such as solar radiation, aerosols and albedo), which alter the energy 
balance in the earth-atmosphere system.  Four main RCP scenarios are represented by IPCC and 
include; a mitigation scenario leading to a low forcing level (RCP2.6), two medium stabilisation 
scenarios (RCP4.5/RCP6) and one high baseline emission scenarios (RCP8.5).  The RCP scenarios 
quantify the total radiative forcing level by 2100 and is expressed in Watts per square meter 
(i.e. the RCP8.5 scenario refers to a forcing pathway leading to 8.5 W/m2 in 2100).  The four 
RCP scenarios reported by the IPCC were chosen to represent a broad range of climate 
outcomes, based on a literature review.  These scenarios are neither forecasts nor policy 
recommendations.  Van Vuuren et al. (2011) presents a useful summary of the RCPs, some 
elements of which been summarised in Table 4. 
 

Table 4: Summary of RCPs (after Van Vuuren et al., 2011) 

Scenario Model Description 
Climate 
Change 

Pathway 

Temperature 
Anomaly 

RCP2.6 

A “peak-and-decline” scenario, where gas 
emissions are reduced substantially and urgently 
over time in order to reach target radiative forcing 
levels. 

Peak and 
Decline 

1.5o C 

RCP4.5 

A stabilisation scenario in which total radiative 
forcing is stabilised shortly after 2100, without 
overshooting the long-run radiative forcing target 
level. 

Stabilisation 
without 
Overshoot 

2.4o C 

RCP6 

A stabilisation scenario in which total radiative 
forcing is stabilised shortly after 2100, without 
any overshoot, by the application of a range of 
technologies and strategies for reducing 
greenhouse gas emissions. 

Stabilisation 
without 
Overshoot  3.0o C 

RCP8.5 

Characterised by scenarios in the literature that 
lead to high greenhouse gas concentration levels 
over time. 

Rising 
throughout 
the 21st 
century 
 

4.9o C 

 
The new RCP scenarios have two notable advantages.  First, it gives researchers the opportunity 
to assess the climate implication of emission pathways (in parallel) without needing to classify 
them with an underlying socio-economic baseline, and second, as the state of the socio-
economic response to climate changes over time, there is always an opportunity to relate the 
projected emission with an RCP pathway.  The aim of the new RCP scenarios “is not to predict 
the future but to better understand uncertainties and alternative futures, in order to consider 
how robust different decisions or options may be under a wide range of possible futures” (IPCC, 
2014b).  This effectively means that under the new RCP model, subjectivity relating to future 
“socio-economic scenarios” are removed and additional confidence can be placed on future 
climate pathways as the scientific community produces more empirical evidence to validate 
which pathway is more likely from ongoing physical observations (Jubb et al., 2013). 
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It is important to recognise that this new approach offers an opportunity to investigate 
management options that will reduce future impacts and vulnerabilities from sea level rise.  As 
with any risk assessment, planners need to consider a combination of consequence and 
likelihood to determine the overall risk.  In the context of sea level rise planning, RCP scenarios 
represent the likelihood side of this equation.  Therefore, it is prudent to consider the potential 
impacts and adopt a risk based approach to decipher which RCP scenario is applicable. 
 
It is worth noting that current emission trends are following the highest emission pathway 
(RCP8.5) (Raupach et al., 2015) and current mitigation “pledges” are insufficient to maintain 
global warming to below 20C increase.  Limiting emission to the RCP2.6 scenario will require very 
significant mitigation efforts and global efforts are currently not on track to follow this scenario 
or limit warming to 20C. 
 

4.2.2 Model Performance 

There is considerable confidence that AR5 climate models provide credible quantitative estimates 
of future climate change, particularly at continental scales and above (Flato et al., 2013).  AR5 
models are able to better reproduce the observed sea level trends during the 20th century than 
in the previous (AR4) and earlier assessments (IPCC, 2014a). 
 
As with any modelling exercise, model performance is determined by the ability of a model to 
simulate historic data and observations.  Figure 8 compares the observed and modelled sea 
levels and rates of sea level rise.  In both instances, there is general agreement between the 
modelled and historic observations of sea level and rates of rise (Church et al., 2013). 
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Table 5: Projection of Sea Level Rise Relative to the Coast, Averaged Along the New South Wales 
Coast, from 1996 to 2100 

Scenario RCP2.6 RCP4.5 RCP6.0 RCP8.5 

 Sea Level rise relative to the coast (m) 

2030 0.13 [0.09-0.18] 0.13 [0.09-0.18] 0.13 [0.08-0.17] 0.14 [0.10-0.19] 

2050 0.22 [0.14-0.29] 0.24 [0.16-0.31] 0.22 [0.15-0.30] 0.27 [0.19-0.36] 

2070 0.30 [0.19-0.42] 0.35 [0.24-0.48] 0.34 [0.23-0.46] 0.45 [0.31-0.59] 

2090 0.38 [0.22-0.54] 0.47 [0.30-0.65] 0.48 [0.32-0.66] 0.66 [0.45-0.88] 

2100 0.42 [0.24-0.61] 0.53 [0.34-0.74] 0.56 [0.37-0.77] 0.78 [0.54-1.06] 

 Rate of Rise (mm yr-1) 
 

2081-2100 
 

3.9 [1.5-6.4] 5.9 [3.1-8.8] 7.4 [4.5-10.5] 11.7 [7.6-16.6] 

 
Note: The central values are given for each greenhouse gas scenario with the likely range (66% confidence 
limits) in brackets. The last row gives the rate of rise over the last two decades of the 21st century. The 
central values provides an estimate of the likely range (66% confidence limits). The values for 2030, 2050, 
2070 and 2090 are twenty year averages. 
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4.6 Sea Level Projections Beyond 2100 

AR5 projections indicate that it is “virtually certain that global mean sea level rise will continue 
beyond 2100” (IPCC, 2014a).  The magnitude of sea level rise beyond 2100, however, is less 
certain and will depend on future greenhouse gas emissions and complex scientific interactions.  
For instance, “on multi-centennial to millennial time scales, feedbacks between regional climate 
and the ice sheet become increasingly relevant, especially under strong climate change 
scenarios” and therefore require coupled climate-ice sheet models to capture potential feedbacks 
(Church et al., 2013). Continued high emissions of greenhouse gasses could result in sea level 
rise of meters over centuries.  
 
Projections beyond 2100 are uncertain because of several factors, including: 
 
 Scenario Projections: The RCPs are defined from the integrated assessment models up to the 

year 2100.  Beyond 2100, Extended Concentration Pathways (ECPs) describe extensions of 
the RCPs “that were calculated using simple rules generated by stakeholder consultations, 
and do not represent fully consistent scenarios” (IPCC, 2013).;   

 Uncertainty: Sea level contributions “only represent the model spread and cannot be 
interpreted as uncertainty ranges. An uncertainty assessment cannot be provided beyond 
the year 2100 because of the small number of available simulations.” (Church et al., 2013); 

 Spatial Resolution: These models “apply a reduced spatial resolution in order to be 
computationally efficient enough to evaluate longer time scales and to combine the different 
climatic components.” (Church et al., 2013);   

 Model Complexity: The few available models used for projections beyond 2100 are “less 
complex” than those used to project sea levels for the 21st century. The models that beyond 
2100 incorporate at a basic level the coupling of the processes of thermal expansion of 
oceans, which increases with global warming, and the sea level rise due to melting ice 
sheets. There is however low confidence in the ability of the coarse-resolution models to 
capture the dynamic ice discharge from Greenland and Antarctica” as   they require 
parameterisation of sub-grid processes that can greatly impact the simulation results 
(Church et al., 2013). 

 
As such, any sea level rise projection beyond 2100 has inherent uncertainties.  The available 
evidence from AR5 indicates that sustained global warming from continued, unmitigated 
greenhouse gas emissions would lead to “near-complete loss of the Greenland Ice Sheet over 
the next millennia” (Church et al., 2013).  However, “current evidence and understanding is 
insufficient to make accurate quantitative assessments” (Church et al., 2013). 
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Figure 15: Estimated Joint ARI (Years) for Significant Wave Height and Tidal Residual at Sydney 

 
 

5.4.2 Coincidence of Catchment Run-off with Elevated Coastal Water Levels 

Westra (2012) applied statistical joint probability methods to identify the extent to which 
extreme rainfall and storm surge are dependent, with a view to providing guidance on the 
degree of interaction between these two physical process.  The study examined three locations 
along the East Australian coastline (Sydney, Brisbane and Mackay) and found that: 
 
 There is statistically significant dependence between extreme rainfall and storm surge; 
 Dependence could be observed over distances of at least several hundred kilometres at each 

of the three tide gauge locations, although it weakens with distance; and 
 The dependence between rainfall and storm tide is heavily influenced by storm burst 

duration, with relatively small levels of dependence for short durations (particularly sub-
hourly durations) which increases gradually for longer durations. 

 
Although more research is needed before the same conclusions can be drawn for catchment 
runoff, given the close association of both oceanic inundation and catchment flooding, a 
precautionary approach is recommended to account for the potential joint occurrence of these 
drivers for design flood analysis (Toniato et al., 2014). 
 
The above work highlights that while much is known about sea levels and the propagation of 
ocean tides into estuaries, the response of estuaries to extreme events is less well understood.  
In particular, the physical process of wave set-up in estuaries and catchment driven mechanisms 
during extreme events remains largely unquantified. Smith and Davey (2013) consolidated all 
relevant available information on flooding in NSW estuaries.  Although this study did not account 
for impacts due to climate change directly, the authors presented a pragmatic approach for the 
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combination of ocean driven and catchment driven flooding mechanisms.  Smith and Davey 
(2013) highlighted that wave set-up can be an important consideration for estuaries and should 
be factored into ocean boundary water levels for flood studies in NSW.  Smith and Davey (2013) 
presented a structured approach to joint catchment and ocean flooding, and proposed a 
selection criterion for setting ocean boundaries based upon the different NSW estuary 
classifications of Roy et al. (2001).  This approach (updated to include considerations of sea level 
rise) is shown in Figure 16. 
 
The interaction of catchment flooding and coastal processes is an important consideration in 
determining flood risk in coastal waterways.  Presently, there is limited guidance for estimating 
flood risk along the Australian coastline for dependant events.  The NSW Office of Environment 
and Heritage (OEH) has developed formal guidance for assessing the coincidence of coastal and 
catchment flooding in NSW under the Floodplain Management Program (Toniato et al., 2014). 
This information is available on the OEH website. 
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6. Conclusion 

This report has been prepared through the Coastal Processes and Responses Node of the NSW 
Climate Adaptation Research Hub to synthesise technical advice on sea level rise in NSW.  The 
report provides a scientific literature review of published data to highlight the various 
components influencing sea levels and the processes associated with global mean sea level rise 
projected over the 21st century.  It is intended that the findings of this report will inform future 
considerations for engineering applications, resource management and coastal zone planning. 
 
This report highlights that in addition to sea level rise there is considerable natural variability of 
sea levels along the NSW coastline, operating over different time scales.  This variability should 
be considered when deriving local sea level projections across NSW.  Updates to the science 
within this report may be required as new information is made available. 
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