LANDSLIDES

What is a Landslide?
Any movement of a mass of rock, debris, or earth, down a slope, constitutes a “landslide”. Landslides take many forms, some of which are illustrated. More information can be obtained from Geoscience Australia, or by visiting its Australian Landslide Database at www.ga.gov.au/urban/factsheets/landslide.jsp. Aspects of the impact of landslides on buildings are dealt with in the book “Guideline Document Landslide Hazards” published by the Australian Building Codes Board and referenced in the Building Code of Australia. This document can be purchased over the internet at the Australian Building Codes Board's website www.abcb.gov.au.

Landslides vary in size. They can be small and localised or very large, sometimes extending for kilometres and involving millions of tonnes of soil or rock. It is important to realise that even a 1 cubic metre boulder of soil, or rock, weighs at least 2 tonnes. If it falls, or slides, it is large enough to kill a person, crush a car, or cause serious structural damage to a house. The material in a landslide may travel downhill well beyond the point where the failure first occurred, leaving destruction in its wake. It may also leave an unstable slope in the ground behind it, which has the potential to fail again, causing the landslide to extend (regress) uphill, or expand sideways. For all these reasons, both “potential” and “actual” landslides must be taken very seriously. They present a real threat to life and property and require proper management.

Identification of landslide risk is a complex task and must be undertaken by a geotechnical practitioner (GeoGuide LR1) with specialist experience in slope stability assessment and slope stabilisation.

What Causes a Landslide?
Landslides occur as a result of local geological and groundwater conditions, but can be exacerbated by inappropriate development (GeoGuide LR8), exceptional weather, earthquakes and other factors. Some slopes and cliffs never seem to change, but are actually on the verge of failure. Others, often moderate slopes (Table 1), move continuously, but so slowly that it is not apparent to a casual observer. In both cases, small changes in conditions can trigger a landslide with serious consequences. Wetting up of the ground (which may involve a rise in ground water table) is the single most important cause of landslides (GeoGuide LR5). This is why they often occur during, or soon after, heavy rain. Inappropriate development often results in small scale landslides which are very expensive in human terms because of the proximity of housing and people.

Does a Landslide Affect You?
Any slope, cliff, cutting, or fill embankment may be a hazard which has the potential to impact on people, property, roads and services. Some tell-tale signs that might indicate that a landslide is occurring are listed below:

- open cracks, or steps, along contours
- ground water seepage, or springs
- bulging in the lower part of the slope
- hummocky ground
- trees leaning down slope, or with exposed roots
- debris/fallen rocks at the foot of a cliff
- tilted power poles, or fences
- cracked or distorted structures

These indications of instability may be seen on almost any slope and are not necessarily confined to the steeper ones (Table 1). Advice should be sought from a geotechnical practitioner if any of them are observed. Landslides do not respect property boundaries. As mentioned above they can "run-out" from above, "regress" from below, or expand sideways, so a landslide hazard affecting your property may actually exist on someone else's land.

Local councils are usually aware of slope instability problems within their jurisdiction and often have specific development and maintenance requirements. Your local council is the first place to make enquiries if you are responsible for any sort of development or own or occupy property on or near sloping land or a cliff.

TABLE 1 - Slope Descriptions

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Slope Angle</th>
<th>Maximum Gradient</th>
<th>Slope Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentle</td>
<td>0° - 10°</td>
<td>1 on 6</td>
<td>Easy walking.</td>
</tr>
<tr>
<td>Moderate</td>
<td>10° - 18°</td>
<td>1 on 3</td>
<td>Walkable. Can drive and manoeuvre a car on driveway</td>
</tr>
<tr>
<td>Steep</td>
<td>18° - 27°</td>
<td>1 on 2</td>
<td>Walkable with effort. Possible to drive straight up or down roughened concrete driveway, but cannot practically manoeuvre a car.</td>
</tr>
<tr>
<td>Very Steep</td>
<td>27° - 45°</td>
<td>1 on 1</td>
<td>Can only climb slope by clutching at vegetation, rocks etc.</td>
</tr>
<tr>
<td>Extreme</td>
<td>45° - 64°</td>
<td>1 on 0.5</td>
<td>Need rope access to climb slope</td>
</tr>
<tr>
<td>Cliff</td>
<td>64° - 84°</td>
<td>1 on 0.1</td>
<td>Appears vertical. Can abseil down.</td>
</tr>
<tr>
<td>Vertical or Overhang</td>
<td>84° - 90°</td>
<td>Infinite</td>
<td>Appears to overhang. Abseiler likely to lose contact with the face.</td>
</tr>
</tbody>
</table>

Some typical landslides which could affect residential housing are illustrated below:
Rotational or circular slip failures (Figure 1) - can occur on moderate to very steep soil and weathered rock slopes (Table 1). The sliding surface of the moving mass tends to be deep seated. Tension cracks may open at the top of the slope and bulging may occur at the toe. The ground may move in discrete "steps" separated by long periods without movement. More rapid movement may occur after heavy rain.

Translational slip failures (Figure 2) - tend to occur on moderate to very steep slopes (Table 1) where soil, or weak rock, overlies stronger strata. The sliding mass is often relatively shallow. It can move, or deform slowly (creep) over long periods of time. Extensive linear cracks and hummocks sometimes form along the contours. The sliding mass may accelerate after heavy rain.

Wedge failures (Figure 3) - normally only occur on extreme slopes, or cliffs (Table 1), where discontinuities in the rock are inclined steeply downwards out of the face.

Rock falls (Figure 3) - tend to occur from cliffs and overhangs (Table 1).

Cliffs may remain apparently unchanged for hundreds of years. Collections of boulders at the foot of a cliff may indicate that rock falls are ongoing. Wedge failures and rock falls do not "creep". Familiarity with a particular local situation can instil a false sense of security since failure, when it occurs, is usually sudden and catastrophic.

Debris flows and mud slides (Figure 4) - may occur in the foothills of ranges, where erosion has formed valleys which slope down to the plains below. The valley bottoms are often lined with loose eroded material (debris) which can "flow" if it becomes saturated during and after heavy rain. Debris flows are likely to occur with little warning; they travel a long way and often involve large volumes of soil. The consequences can be devastating.

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 - Introduction
- GeoGuide LR3 - Soil Slopes
- GeoGuide LR4 - Rock Slopes
- GeoGuide LR5 - Water & Drainage
- GeoGuide LR6 - Retaining Walls
- GeoGuide LR7 - Landslide Risk
- GeoGuide LR8 - Hillside Construction
- GeoGuide LR9 - Effluent & Surface Water Disposal
- GeoGuide LR10 - Coastal Landslides
- GeoGuide LR11 - Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.