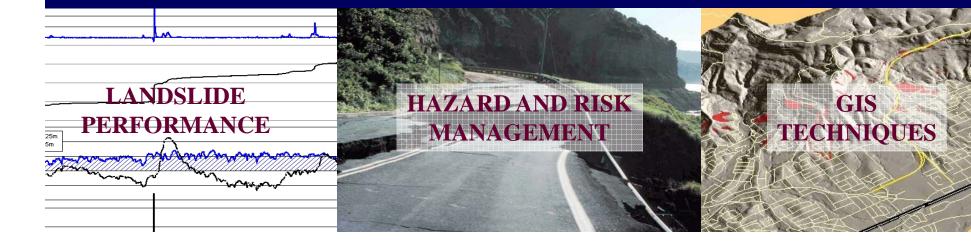


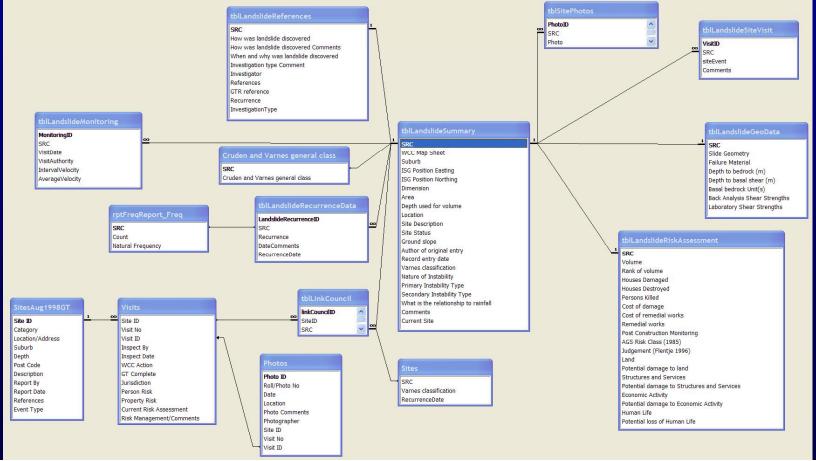
Dr. Phil Flentje, Senior Research Fellow (Engineering Geologist) Civil, Mining, and Environmental Engineering email: pflentje@uow.edu.au

GIS-based Landslide Inventory, Susceptibility and Hazard zoning capability

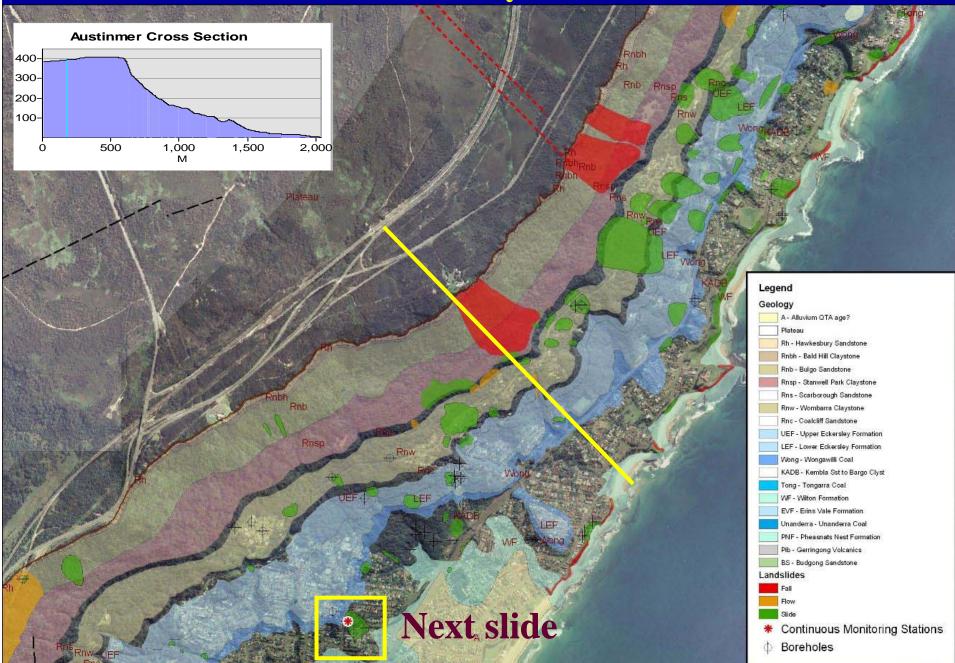
Dr Phil Flentje http://www.uow.edu.au/eng/research/landslide/


University of Wollongong, NSW, AUSTRALIA

in collaboration with Industry Partners Wollongong City Council Roads and Traffic Authority Rail Corporation

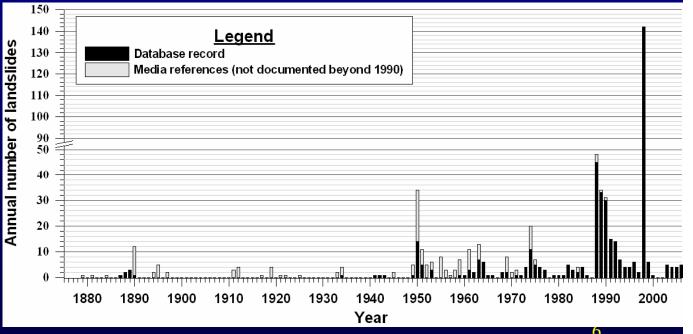


Discussion Issues

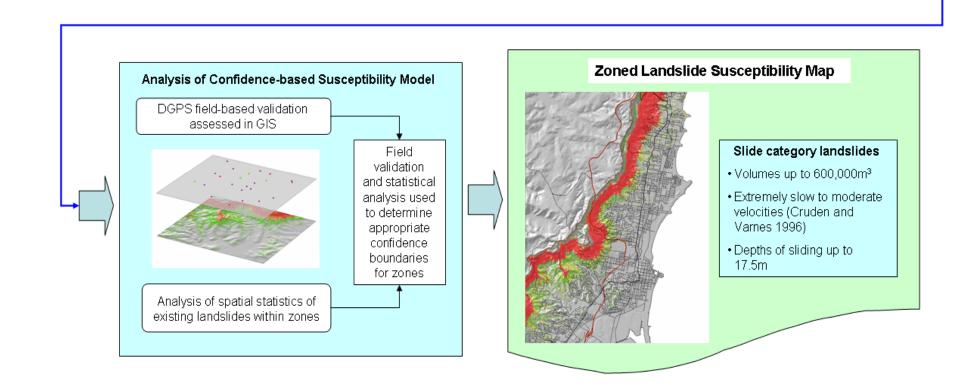

- Illawarra GIS based Landslide Inventory
- What the LI tells us
- Growing into the Sydney Basin LI
- Landslide Susceptibility Modelling Wollongong LGA (technical bits and results)
- Sydney Basin wide Landslide Inventory and the 'proof of concept' SB Landslide Susceptibility zoning
- A composite National Landslide Inventory
- Conclusions

UoW Illawarra Landslide Inventory

- Please refer to paper
- Developed from 1993, now quite 'mature' but have perhaps 80%
- Field mapping 1:4000 scale and since with DGPS, GIS AP/ALS
- Comprehensive relational MS Access and ESRI Geo-database

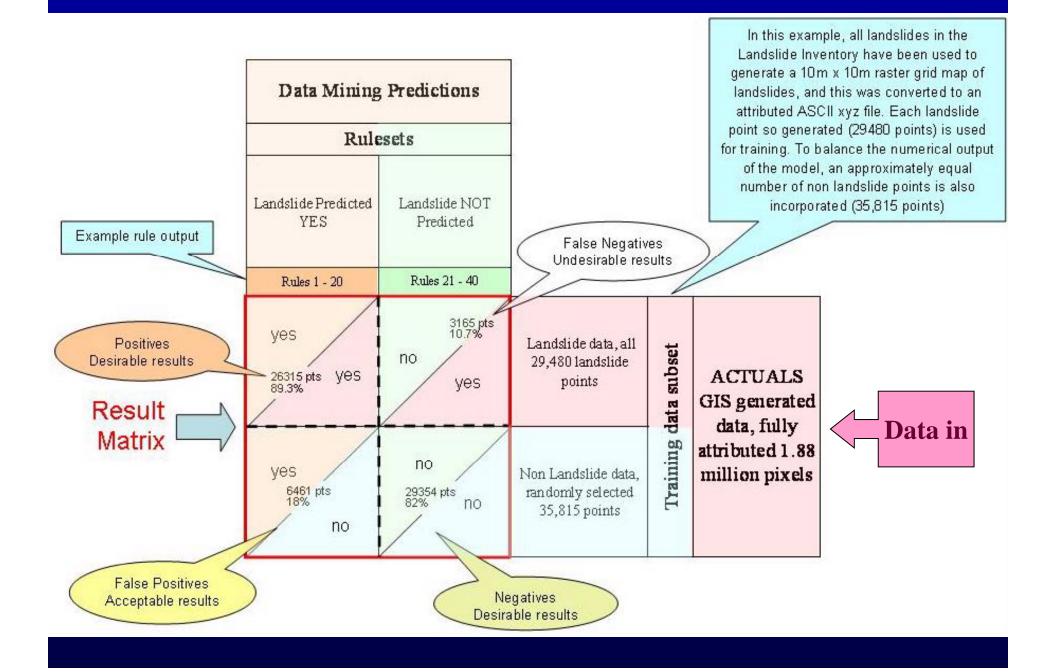

UoW Illawarra Landslide Inventory – Thirroul to Wombarra area

So, what does this Inventory tell us about landsliding within Wollongong? In summary


- 615 landslide locations, over 1000 'events' includes first time movements, also multiple recurrences at some sites, some meaningful frequency info
- 615 landslides comprise <u>52 falls, 49 flows and 501 slides</u> according to the Cruden and Varnes 1996 classifications system + a few unclassified
- Volumes <1m³ up to 720,000m³, average 21,800m³
- In the 188 km² model area, 2.37% of the ground surface is affected by landslides -1880 to 2006
- 5 people killed
- 51 houses damaged, 30 destroyed
- Costs are very poorly documented and understood
- GA is working on this

Landslide Susceptibility Modeling

- Definition "quantitative or qualitative assessment of the classification, volume and spatial distribution of landslides in an area" AGS 2007 (a)
- LI shows this must be done for independently for slide, fall and flow category landslides
 the rest of this presentation focuses on slide category landslides
- Knowledge-based 'Data Mining' modeling within GIS framework
- Datasets:
 - Landslide Inventory
 - Geology
 - Vegetation
 - 1976 contour based DEM 10m pixel res (Qtn: what is the 'best' resolution to use???)
 - DEM derivatives (slope, aspect, curvatures, Terrain Classification, Flow Accumulation and the Wetness Index)
- Scheduled for refinement now with an ALS generated DEM, more landslides


Susceptibility 'knowledge based' modeling process DATA COLLECTION **GIS-based data Management** Study Area comprises 1.88 million 10m² pixels Data Mining Analysis See5 software Landslide Inventory GIS-based Data 1.88 million fully attributed Geology Landslide xyz points preparation for Data Vegetation Susceptibility Mining Analysis •65,295 training points -29,480 landslide points + random 35,815 non Model Layer DEM (z) •Raster DEM to generated - Slope Inclination ASCII xyz landslide points (to balance numbers in the model) •Rule sets applied to - Slope Aspect Raster Intersect all 1.88 million pixels - Terrain Units Point •See5 generates Symbolic Decision Tree and rule sets in GIS - Curvature •1.88 million points •Rule confidence - Profile Curvature Model adjustments, mapped as landslide Output attributed - Plan Curvature Ľ) analysis and cross validation susceptibility .csv file - Flow Accumulation Performance of each rule - Wetness Index summarized, includina rule∫ confidence

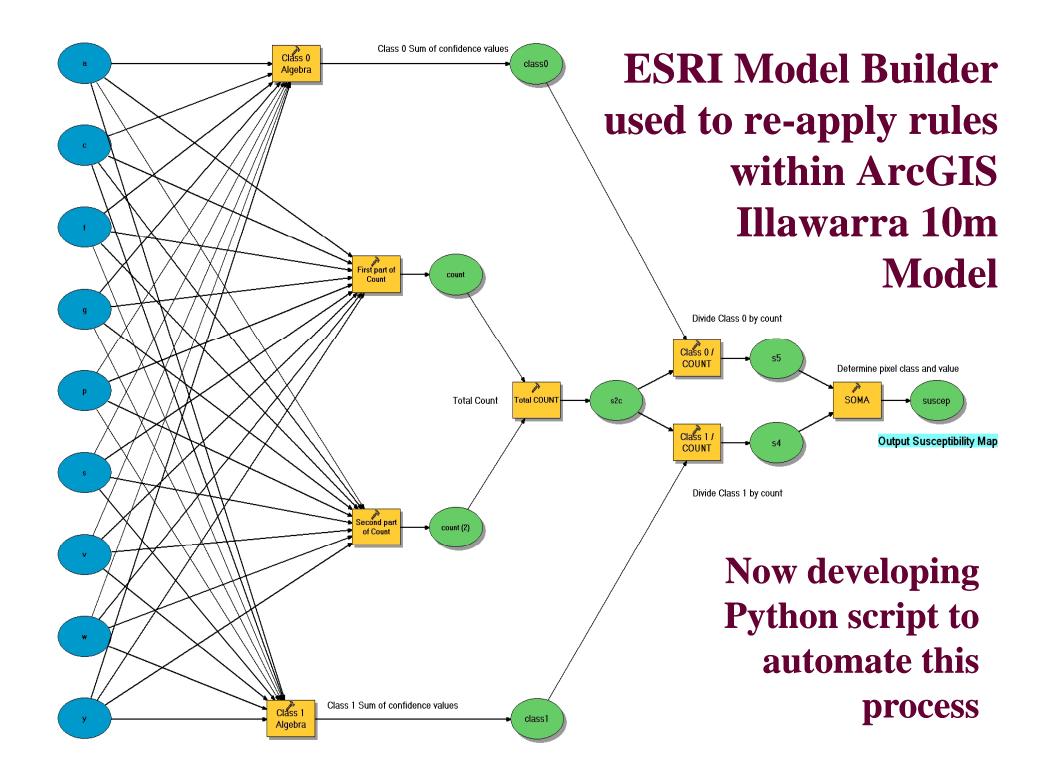
Segment of the text file used for See5 Data Mining

• Data mining rule set generated for the training data ie, all landslide pixels plus an equal number of non landslide random pixels (65,295 points)

Х	Y Z		flowacc	wetness	ras10ma	ras10ms	plancur	slide	geology	Ve	getat p	orofile	curvatu	geom_10
303109.03	1220096.43	85.65	7	0.00540	230.61	19.81	-0.01	1		3	3	0.082	-0.087	1
303119.03	1220096.43	88.41	7	0.00377	224.67	17.98	0.33	1		3	3	-0.281	0.610	2
302889.03	1220086.43	40.00	26	0.00000	-1.00	0.00	0.00	1		3	3	0.000	0.000	3
302899.03	1220086.43	40.00	1	0.00000	-1.00	0.00	0.00	1		3	3	0.000	0.000	3
302909.03	1220086.43	40.00	61	0.00000	-1.00	0.00	0.00	1		2	3	0.000	0.000	3
302919.03	1220086.43	40.00	79130	0.00000	219.36	1.50	0.00	1		2	3	0.025	-0.025	3
302929.03	1220086.43	40.03	29	0.00001	231.83	7.56	-0.74	1		2	3	2.557	-3.297	2
302939.03	1220086.43	42.12	17	0.00173	232.65	13.54	0.54	1		2	3	0.365	0.172	2
302949.03	1220086.43	44.16	32	0.00154	230.31	14.95	0.04	1		2	13	0.030	0.008	2
302959.03	1220086.43	46.20	5	0.00207	229.45	14.86	0.02	1		1	13	-0.018	0.040	2
302969.03	1220086.43	48.19	26	0.00136	229.11	14.31	-0.10	1		1	13	-0.142	0.047	1
302979.03	1220086.43	50.14	4	0.00266	228.98	12.92	0.19	1		1	13	-0.623	0.818	1
302989.03	1220086.43	51.65	27	0.00117	227.70	11.56	-0.02	1		1	13	-0.077	0.056	2
302999.03	1220086.43	53.11	3	0.00239	223.99	11.15	0.22	1		1	13	0.043	0.174	2
303009.03	1220086.43	54.50	15	0.00197	219.04	11.39	0.45	1		1	13	-0.179	0.631	3
303019.03	1220086.43	55.71	2	0.00344	215.57	11.81	0.30	1		1	3	-0.202	0.507	3
303029.03	1220086.43	56.80	28	0.00125	216.20	12.30	-0.23	C)	1	3	0.173	-0.407	1
303039.03	1220086.43	58.19	1	0.00214	219.39	15.38	0.71	C)	1	3	0.712	0.000	1
303049.03	1220086.43	59.58	29	0.00110	221.06	24.13	-1.07	C)	1	3	4.603	-5.671	1
303059.03	1220086.43	63.68	19	0.00263	222.08	32.43	-0.81	C)	1	3	2.607	-3.421	3
303069.03	1220086.43	69.65	14	0.00597	223.50	32.89	1.95	C)	1	3	-3.908	5.859	3
303079.03	1220086.43	73.03	5	0.01099	225.66	28.82	-0.86	1		1	3	-0.555	-0.302	3
303089.03	1220086.43	76.92	4	0.00733	226.88	26.48	0.37	1		1	3	-0.621	0.989	2
303099.03	1220086.43	80.65	8	0.00808	228.41	24.23	0.62	1		1	13	-1.954	2.578	1
303109.03	1220086.43	83.44	8	0.00447	230.86	21.02	-0.42	1		1	13	-0.436	0.016	2

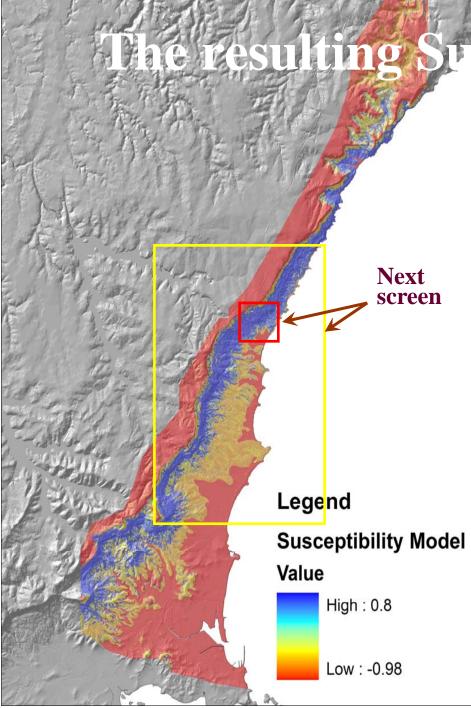
3 example rules of 40 in rule set

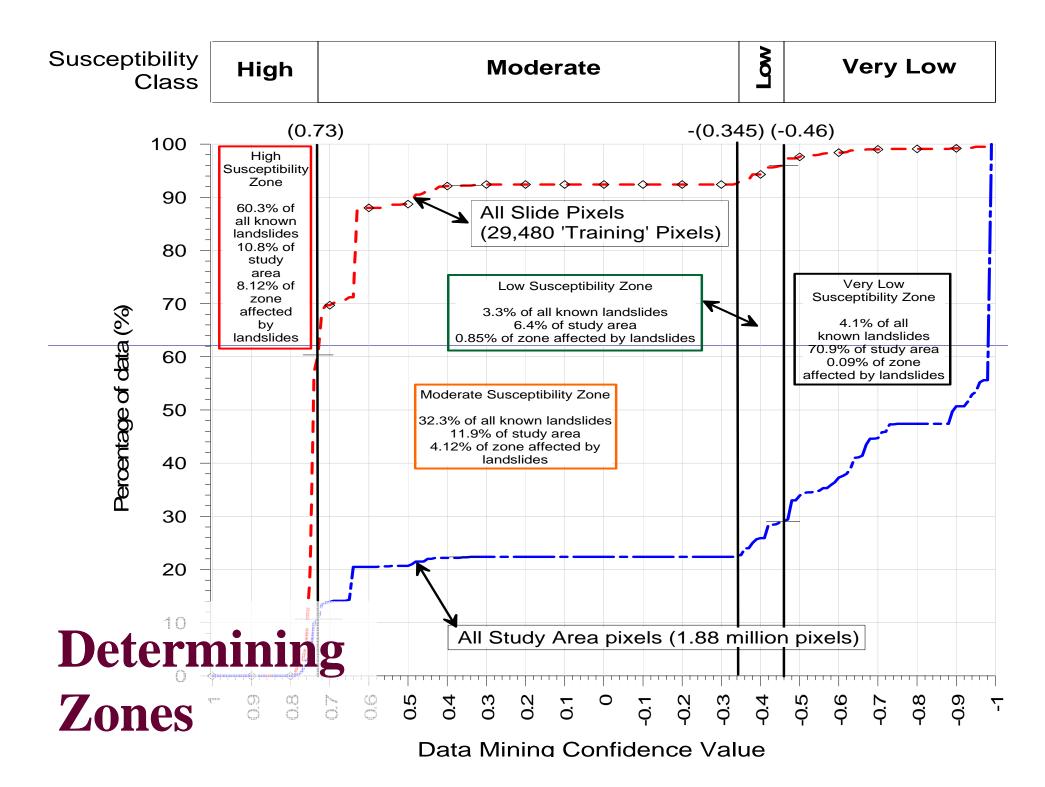
Rule 3: (22) flowacc <= 0 aspect > 131.2 **slope** > **9.5** geology {3, 15, 16, 17} **uowvege** {6, 7} -> class 0 [0.958] **Rule 24: (590/89) aspect** <= 78.8 **slope** > **9.5** geology = 17uowvege {4, 8, 16} -> class 1 [0.848] **Rule 26: (1629/265) slope** > **9.5 plaincur** <= -0.14 geology {3, 5, 6, 8 - 17, 19} uowvege {4, 8, 16} -> class 1 [0.837]

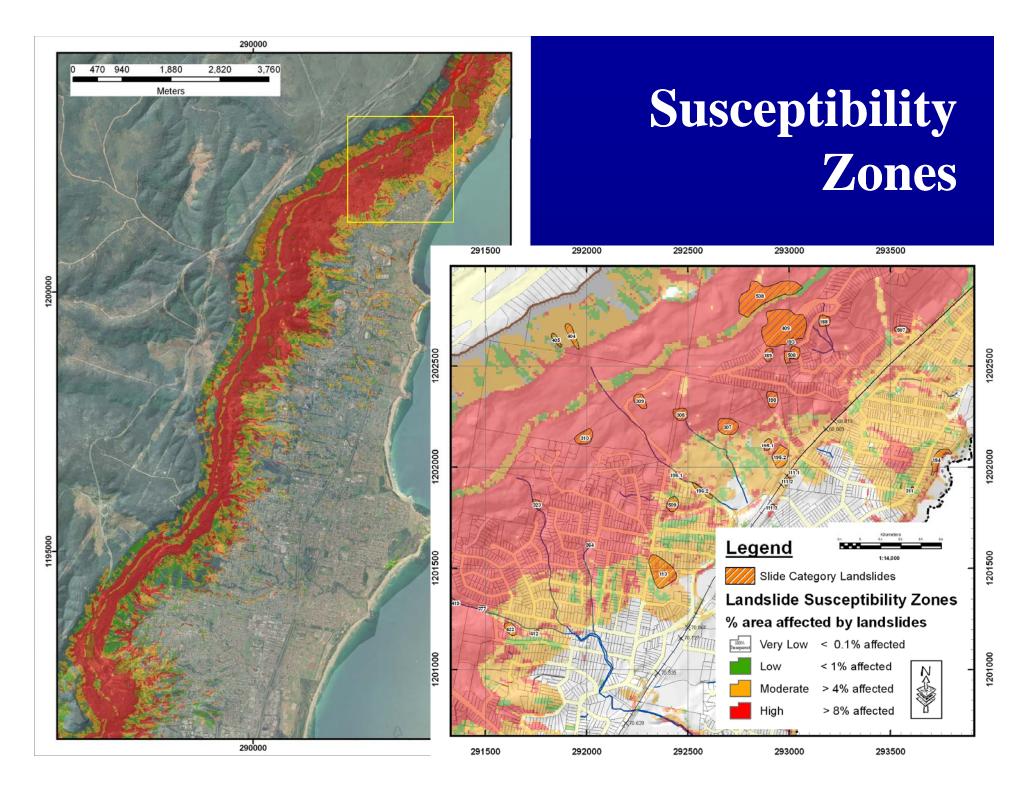

Data Mining Rules

Data Mining rules are generated to define all attributed training data – in layman's terms DM is simply pattern recognition

The Model — contains a defined number of rules. Example rules are shown to the left. Each rule is ranked with a confidence factor, after repeated evaluation and validation, by the Laplace Ratio (nm+1)/(n+2) where n is the number of training cases that a specific rule correctly recognises, and m if it appears, is the number of cases that do not belong to the class predicted by the rule., i.e. rule x: (n/m). Class 0 is no landslide, 1 is landslide


Rule sets then applied to Entire Model Area using ESRI Model Builder


Confidence value as it aplies to each pixel is then mapped as susceptibility distribution



sceptibility Grid

Getting the 'model' is one step in this process But how do you categorize or differentiate 'zones' in this model • Will these zones and stats be meaningful to compare to other 'zones' in adjacent regions, let alone elsewhere nationally and internationally? If not, what's the point ?

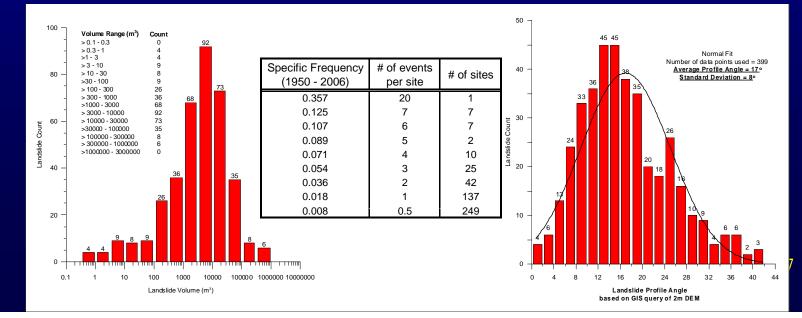
Susceptibility Summary

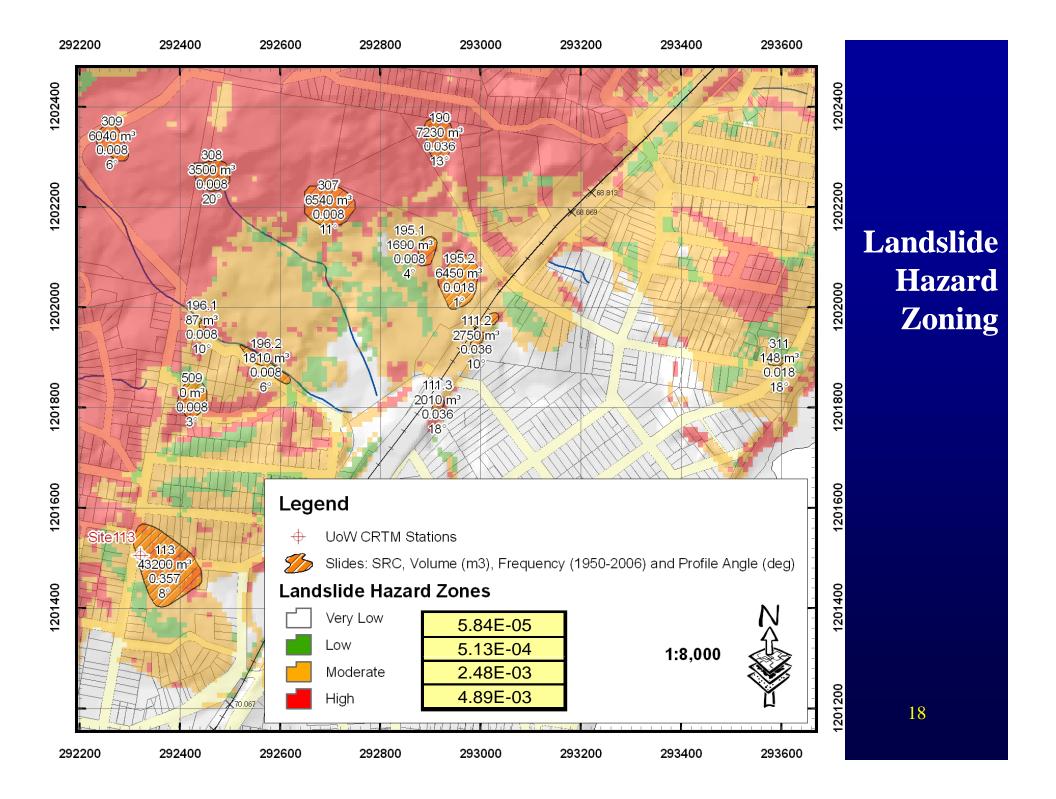
<u>Legend</u>

Landslide Susceptibility Zones

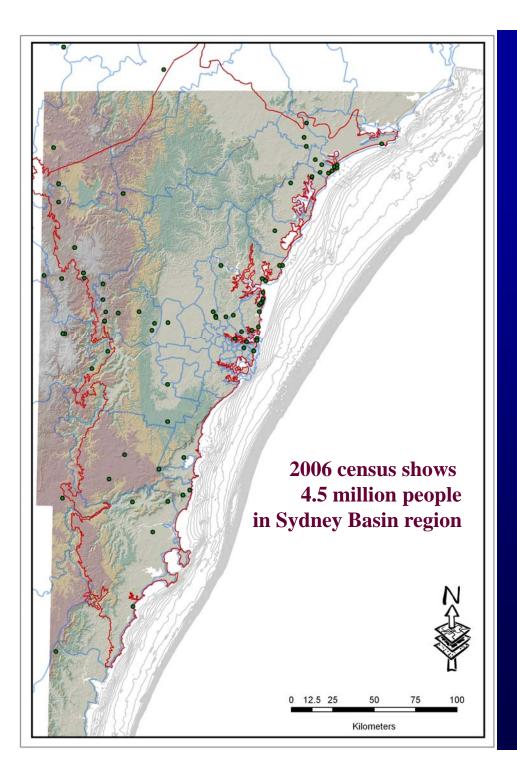
Sus. Class - % area affected by slides

Very Low	~ 0.1% affected
Low	< 1% affected
Moderate	> 4% affected
High	> 8% affected

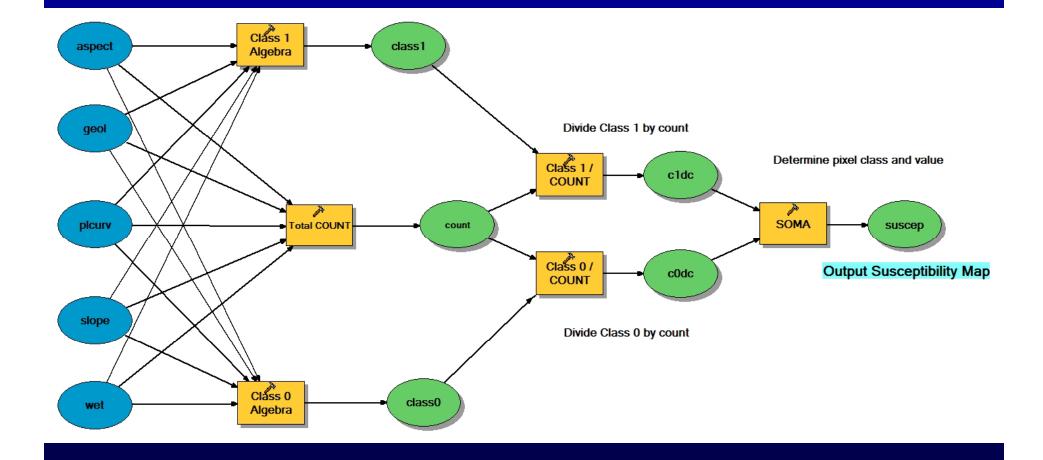

Statistics of Susceptibility Model Area (188 Square Kms)

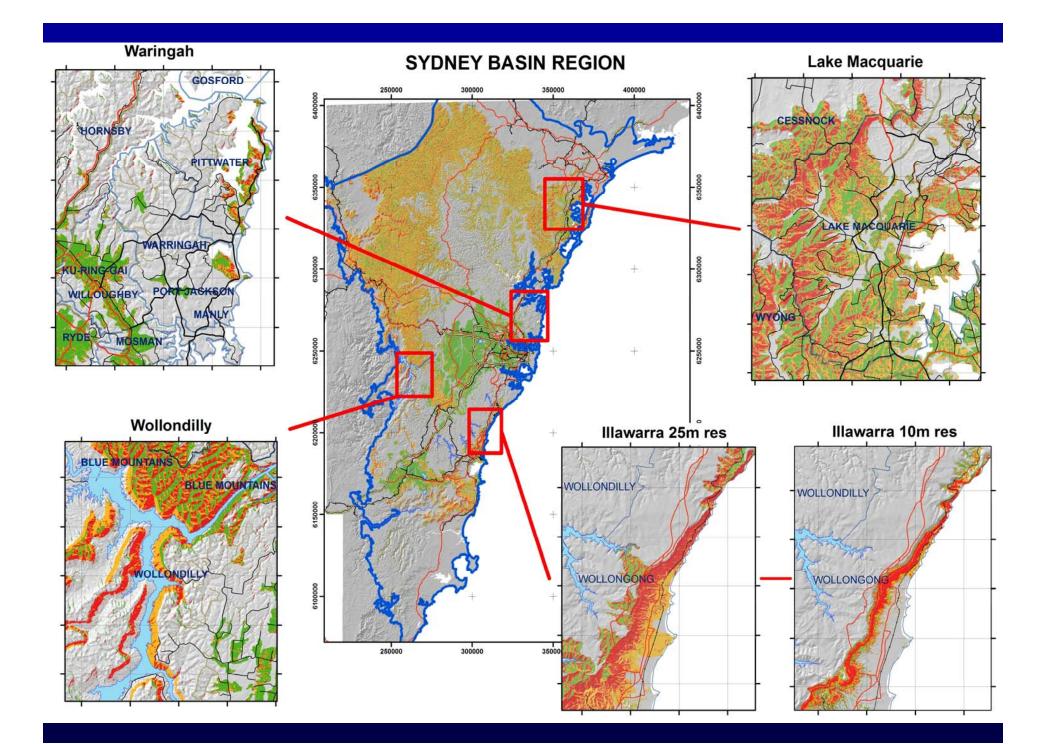

Susceptibility Class	Map Colour	C5 Model Confidence Range	% of Susceptibility Class area affected by Slides	Susceptibility Class as % of Study Area	% of Total Slide Population in Susceptibility Class	
Very Low		(min) -0.98 to -0.46	0.10	70.86	4.1	
Low		> -0.46 to -0.345	0.85	6.47	3.7	
Moderate		> -0.345 to 0.73	4.12	9.23	35.1	
High		> 0.73 to 0.81 (max)	8.12	13.44	57.1	

Regional Landslide Hazard


- Hazard a condition with the potential to cause an undesirable consequence. Should also include location, volume, classification, velocity and probability
- Now that some reasonable 'zones' have been defined this all becomes entirely possible, particularly with the aid of the GIS and various zone distributions.

Hazard Description	Мар	affected	Zone area as % of Study Area (Sa)	% of Total Slide Population in Hazard Zone (Sp)	Landslide Annual Average Frequency (1950 - 2006)	Relative Susceptibility of Zone (S/Stotal) = Sr	(Hazard)	Maximum Landslide Volume (m³)	Average Landslide Volume (m³)	Weighted (volume) Hazard
Very Low		0.10	70.86	4.1	1.65E-02	7.36E-03	5.84E-05	36,300	3,500	5.20E-04
Low		0.85	6.47	3.7	1.72E-02	6.46E-02	5.13E-04	4,700	1,450	1.89E-03
Moderate		4.12	9.23	35.1	2.21E-02	3.12E-01	2.48E-03	45,000	5,700	3.59E-02
High		8.12	13.44	57.1	2.47E-02	6.16E-01	4.89E-03	720,000	28,700	3.56E-01

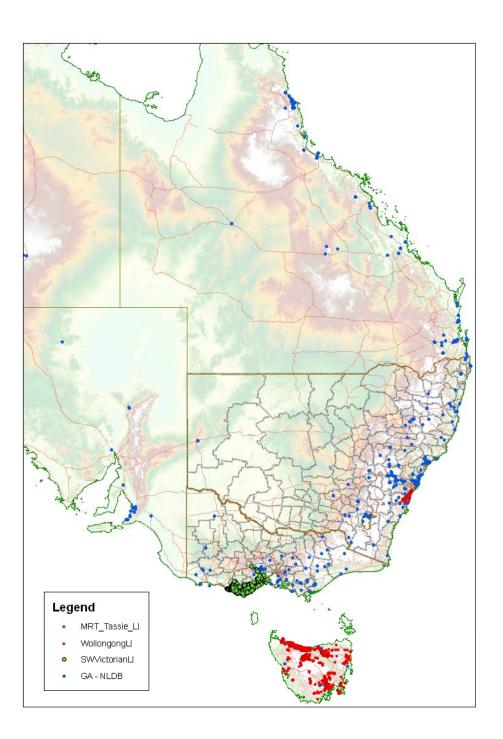

Rockfall modelling as well but that's another storey ...



Extent of UoW Sydney Basin Landslide Inventory

 UoW Landslide Inventory – 586 landslides
 GA - National Landslide database within Sydney Basin excluding the Illawarra – 130
 Total 716 landslides
 Vegetation mapping at least 500 +
 Pittwater LGA also has 220 landslides + SCCG etc collaboration may add more

ESRI Model Builder used to re-apply rules within ArcGIS Sydney Basin Model shown


Composite National Landslide Inventory

MRT 1584 landslides SW Victorian 1924 + landslides GA's 'Australian LI' 492 landslides Wollongong UoW LI 586 Warragamba Area 158 20 from S. Greene PhD in SA & hopefully 'Pittwater Council 223' & possibly even others from wider SCCG

roughly 4987 landslides nationally that we know about
 4700 are on the eastern seaboard and Tasmania

Doesn't include many in Camden Picton Area, Alpine Regions, Parwan Valley and Shire of Yarra Ranges in Victoria etc

Recent geomorphic photo interpretation in SW Victoria has identified almost 10,000 areas of instability

Conclusions

- The base Landslide Inventory data is the essential first step in this type of work and its compilation requires sound and thorough engineering geological mapping – there is no substitute for this ! Repeat, no substitute!
- the spatial modeling is only possible if the LI exists
- Knowledge based Data Mining is a sound functional technique to aid development of landslide Susceptibility and Hazard zoning.
- AGS 2007 now requires this work be done
- Proven for high resolution, large, regional perhaps even Australia wide applications
- GIS techniques are only a tool to aid balanced decision making