

Tropical Cyclone Yasi - 3rd Feb 2011

Structure

- Background to Geoscience Australia.
- Overview of agency capabilities in support of risk
 assessment and emergency management.
- Research activity areas:-
 - 1) Post Disaster Survey Activity
 - 2) Flood Vulnerability DCCEE Co-funded Activity
 - 3) <u>Alexandra Canal Study</u> City of Sydney Collaboration
 - 4) UN Global Assessment Report COVERMAR Contr.
- Summary and future directions.

Geoscience Australia

 Is a prescribed Australian Government agency within the Industry Portfolio and located in Canberra. Our Minister is Mr Ian Macfarlane MP.

Geoscience Australia

- Is a prescribed Australian Government agency within the Industry Portfolio and located in Canberra. Our Minister is Mr Ian Macfarlane MP
- Is Australia's national geoscience research agency with a mission is to use geoscientific information and knowledge for the economic, social and environmental benefit of Australia.
- Provides a range of information products (baseline and derived) to those involved in managing natural hazard risk.
- Collaborates with both state and local government, the insurance industry and broader research community.

SCIENCE AUSTRALIA

Baseline geographic information

Topographic and elevation data

Digital

- Map Connect (custom maps and data downloads)
- Topographic mapping data downloads
- Online ordering
- Physical
- GA Sales Centre

GEOSCIENCE AUSTRALIA

Aggregated exposure data GA compiles exposure data tion type: Database known as 'NEXIS' ic building data Council data Off-the-shelf product State data Building level data aggregated to LGA or Rules and formulas SI A Census data Updated annually Postcode Digital only

Mesh Blocks

Cadastre

Baseline geographic information

Spreadsheet

• Map

Hazard detection and alerting

Natural Hazards Impact A

Disaster mapping products

Rapid imagery acquisition

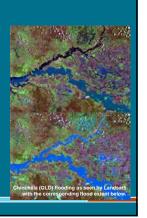
- Public-good imagery
 - Routine capture (MODIS, LANDSAT)
- Commercial imagery
- Targeted capture (Radar, high-resolution)
- Catastrophic disasters
 International support

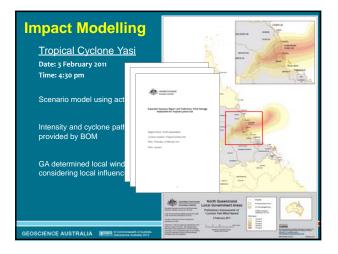
Imagery analysis products

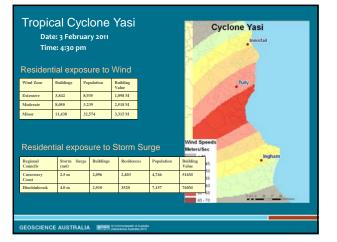
BEOSCIENCE AUSTRALIA

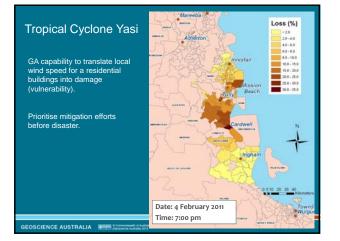
Disaster footprints and example application

Imagery analysis products


Semi-automated to produce


- Flood extent
- Burn scar extent
- Cyclone impact extentOil slick extent


Uncertainties


- Sensor quality
- Cloud cover

SCIENCE AUSTRALIA

National Flood Risk Information Project (NFRIP)

NFRIP: 4 year project, 1 July 2012 - 30 June 2016

Aim: To improve the quality, availability and accessibility of flood information

Users:

 All levels of Government, public, insurers, land-use planners, emergency managers and consultants.
 How?:

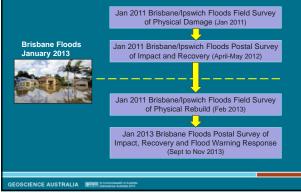
Build and populate a

- Revise the Australian Rainfall and Runoff,
- Analyse Geoscience Australia's satellite imagery archive to derive historic flood extents.

Benefits:

 Discover existing authoritative information, view in a consistent way at a central location to manage flood risk.

GEOSCIENCE AUSTRALIA



Dubbo Thunderstorm	2001
Canberra Bushfires	2003
Bendigo Tornado	2003
South East Melbourne Flash Floods	2004
Eyre Peninsula Bushfires	2005
Lismore Floods	2005
Tropical Cyclone Larry	2006
Victorian Bushfires	2009
Padang Earthquake, Indonesia	2009
Kalgoorlie Earthquake	
Darfield Earthquake, NZ	
Brisbane/Ipswich Floods Jan 2011(Indonesian and NZ assistance)	
Tropical Cyclone Yasi (Philippines and NZ assistance)	
Brisbane/Ipswich Jan 2011 Floods (postal survey of impact and recov	/ery) 2012
Tropical Cyclone Yasi (postal survey of impact and recovery)	
Brisbane/Ipswich Jan 2011 Floods (mitigation in rebuild)	
Brisbane Jan 2013 Floods (postal survey of impact and warning respo	onse) 2013
Bundaberg Floods (residential postal survey of impact and recovery)	2014 - Underway

Longitudinal Studies

Survey Tools

FCM11

Pre-programmed handheld computers with GPS and Camera.

Common Platform for Survey Data Review (FIDAT)

2) DCCEE Co-Funded Flood Vulnerability

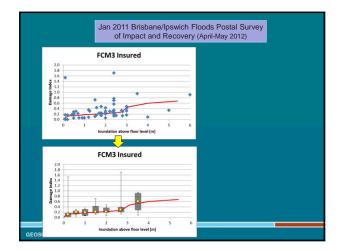
Generic House Type	Costing Module Code	Representative of House Types	Description
	FCM1	ZA, N, D, F, E, L, M	1 storey, RF, WB or panel cladding, no garage, HB lining
	FCM2		1 storey, RF, WB or panel cladding, no garage, timber lining
	FCM3	J, Z, ZF, V, ZD, I	2 storey, SoG, CM lower storey, WB upper storey, metal roof, no garage, PB lining
	FCM4	K, T, Y, H, R, S, ZB	2 storey, SoG, CM lower storey, WB upper storey, metal roof, garage, PB lining

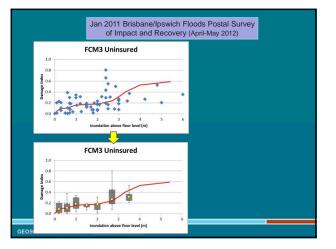
 FCM5
 G
 2 storey, SoG, WB cladding, partial lower floor, PB lining

 FCM6
 ZE
 2 storey, RF, WB cladding, no garage, PB lining

 FCM7
 A
 1 storey, SoG, BV, garage, PB lining

 FCM8
 X, P, O, W
 1 storey, SoG, BV, no garage, PB lining

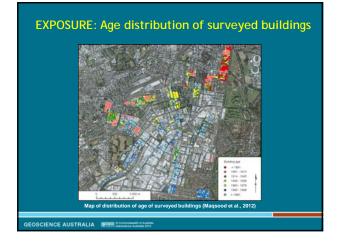

 FCM9
 B
 1 storey, RF, BV, no garage, PB lining

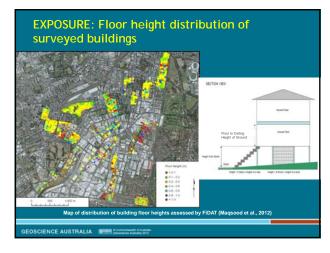

 FCM10
 U
 1 storey, SoG, CM, no garage

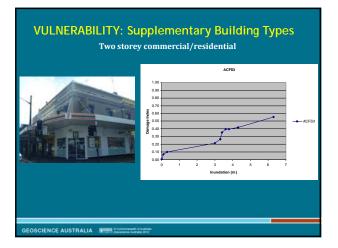
v RF CM, no g

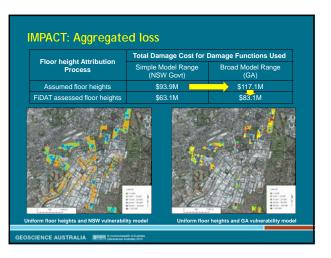
No	Component	Description	Required repairs for inundation depth relative to floor level (m)									
			-0.3		0.1	0.3	0.5		1.5		2.5	
	Substructure	Timber lattice enclosing underfloor space	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry	Jet clean and allow to dry
	Skirting boards	Moulded softwood skirting, paint finish			Remove and replace	Remove and replace	Remove and replace	Remove and replace	Remove and replace	Remove and replace	Remove and replace	Remove and replace
	Ceiling	13mm plasterboard on timber battens										Remove and replace. Allow to refix 25% of battens
	Wall insulation	Fibreglass batts (thermal to exterior walls, sound to interior walls)			Remove and replace over bottom half of wall height	Remove and replace over bottom half of wall height	Remove and replace over bottom half of wall height	Remove and replace over bottom half of wall height	Remove and replace over full wall height	Remove and replace over full wall height	Remove and replace over full wall height	Remove and replace over full wall height
	Wall finishes (general)	Undercoat + 2 top coats paint			Underco at lower half of walls and apply 2 top coats to whole wall	Underco at and apply 2 top coat to whole wall						


3) Alexandra Canal Study


Aim and objectives


- Collaboration with the City of Sydney facilitated by the SCCG.
- The project aimed to better understand the future effects of climate change in the Alexandra Canal catchment area through improved risk assessment framework components.
- The objectives were to:
 - develop an exposure database with key attributes for each building.
 - develop a representative vulnerability models of the building stock.
 - assess the impact of an event in a scenario study to inform the development of mitigation measures.


GEOSCIENCE AUSTRALIA


HAZARD: Selected Scenario

4) UN International Strategy for Disaster Reduction (UNISDR) - GAR 2015

- The Global Assessment Report on Disaster Risk Reduction (GAR) is a biennial global assessment of disaster risk reduction. It includes a comprehensive review and analysis of the natural hazards that are affecting humanity.
- The GAR seeks to monitor risk patterns and trends, progress in disaster risk reduction and provides strategic policy guidance.
- Significantly it develops information using the risk assessment framework.
- Vulnerability knowledge has been a weakness of the GAR 2013 work reviewed by GA.
- Through UN and Australian AID funding a series of multi-hazard workshops were convened by GA to solicit expert opinion on regional vulnerability. COVERMAR researchers participated.

GEOSCIENCE AUSTRALIA

			Hazard			
Regional Scope -	Country	Earthquake	Wind	Flood	Ash	Tsunami
	Australia	Yes	Yes	Yes	No	Yes
Scone -	New Zealand	Yes	Yes	Yes	Yes	Yes
JCOPC	Taiwan	No	No	No	Yes	No
Country List	Singapore	Yes	Yes	Yes	No	No
Country List	Japan	No	No	No	Yes	No
_	Korea, Rep.	No	No	No	Yes	No
	Russia	No	No	No	Yes	No
	New Caledonia	Yes	Yes	Yes	No	Yes
	China	No	No	No?	Yes	No
24 in Total	Malaysia	Yes	Yes	No?	No	No
24 III 10tai	Tonga	Yes	Yes	Yes	Yes	Yes
	Thailand	Yes	Yes	Yes	No	Yes
	Fiji	Yes	Yes	Yes	Yes	Yes
	India	Yes	Yes	Yes	No	Yes
	Pakistan	Yes	Yes	Yes	No	Yes
	Sri Lanka	Yes	Yes	Yes	No	Yes
	Cook Islands	Yes	Yes	Yes	No	Yes
	Bhutan	Yes	Yes	No?	No	No
	Vietnam	Yes	Yes	No?	No	No
	Solomon Islands	Yes	Yes	Yes	Yes	Yes
	Vanuatu	Yes	Yes	Yes	Yes	Yes
	Philippines	Yes	Yes	Yes	Yes	Yes
	Mongolia	No	No	No?	Yes	No
	Indonesia	Yes	Yes	Yes	Yes	Yes
	Papua New Guinea	Yes	Yes	No?	Yes	No
	Samoa	Yes	Yes	No?	Yes	Yes
	Myanmar	Yes	Yes	No?	No	No
	Cambodia	Yes	Yes	No?	No	No
	Bangladesh	Yes	Yes	No?	No	No
GEOSCIENCE AUSTRALIA	Nepal	Yes	Yes	No?	No	No

Pre-workshop	Circulate material on the nature of vulnerability models, the building schema, the workshop process and the draft agenda. The aim is to get experts aligned to the process so time will not be spent discussing alternatives.
	The core process is to identify a limited range of better understood building types and resistance levels with supporting models and data. The models data will be sourced from the experts in the region. Consensus is derived for a small number
Workshop	of buildings covering both engineered and non-engineered buildings working down the schema. Consensus is then derived on how these functions change laterally across the table for a sub-sample of the selections to characterise the changes.
Post-workshop contributions	The models from the workshop are supplied in a spreadsheet tool to experts for them to rank all other build types vertically as a priority. Lateral ranking can also be undertaken as they are able.
Post-workshop analysis and reporting	GA will integrate all responses, adjust hazard parameters to be compatible with CAPRA, aggregate up some building types for flood to be compatible with GAR 2015 exposure classes and report.

Summary and Future Directions

- Geoscience Australia has a range of baseline and derived information for use by government, emergency management and the risk research community.
- This is being shared and aligns with GA's strategic plan which has Community Safety as one of the six high level strategies .
- Key directions:-
 - Greater discoverability of NEXIS through creative commons and tools.
 - Drive to obtain an improved understanding of vulnerability and mitigation options, informed by survey capture (BNHCRC).
 Ongoing program to better understand community resilience and recovery.

 - Move to more routinely provide exposure and impact information to emergency management after events.

GEOSCIENCE AUSTRALIA

