EFFLUENT AND SURFACE WATER DISPOSAL

EFFLUENT AND WASTEWATER

All households generate effluent and wastewater. The disposal of these products and their impact on the environment are key considerations in the planning of safe and sustainable communities. Cities and townships generally have reticulated water, sewer and stormwater systems, which are designed to deliver water and dispose of effluent and wastewater with minimal impact on the environment. However, many smaller communities and metropolitan fringe suburbs throughout Australia are un-sewered. Some of these are located in hillside or coastal settings where landslides present a hazard.

Processes by which wastewater can affect slope stability

As explained in GeoGuides LR3 and LR5, groundwater variations have a significant impact on slope stability. Inappropriate disposal of effluent and wastewater may result in the ground becoming saturated. The result is equivalent to a localised rise of the groundwater table and may have the potential to cause a landslide (GeoGuides LR2, LR5 and LR8).

On-site effluent disposal

In un-sewered areas disposal of effluent must be achieved through suitable methods. These methods usually involve containment within the boundaries of the site ("on-site disposal"). State environment protection agencies and local government authorities can usually provide advice on suitable disposal systems for your area. Such systems may include:

- Septic systems, which involve a storage/digestion tank for solids, with disposal of the liquid effluent via absorption trenches and beds, leach drains, or soak wells. Such systems are best suited to areas not prone to landslides.
- Aerobic treatment units which incorporate an individual household treatment plant to aid breakdown of the waste into a higher quality effluent. Such effluent is further treated and disposed of by surface or sub-surface irrigation, sub-soil dripper, or shallow leach drain system.
- Nutrient retentive leaching systems which utilise septic tanks to process the solid and liquid wastes in conjunction
 with discharge of the effluent through sand filters, media filters, mound systems and nutrient retentive leaching
 systems, which strip the effluent of nutrients.

Toilet (and sometimes kitchen) waste is known as *black water*. Other, less contaminated, wastewater streams from showers, baths and laundries are known as *grey water*. *Grey water re-use systems* allow a household to conserve water from bathrooms, kitchens and laundries, for re-use on gardens and lawns.

Recommendations for effluent disposal

In areas prone to landslide hazard, it is recommended that whatever effluent disposal system is employed, it should be designed by a qualified professional, familiar with how such a system can impact on the local environment. Local council, and in some instances state environment protection agency, approval is usually required as well. Many local authorities require a site assessment report, which covers all relevant issues. If approved, the report's recommendations must be incorporated in the system design. Reduction in the volume of effluent is beneficial so composting toilets and highly rated (i.e. low consumption) water appliances are recommended. It should be noted that in some state and local government jurisdictions there are restrictions on the alternative measures that can be applied. Consideration should be given to applying treated wastewater to land at low rates and over as large an area as possible. Further guidance can be found in Australian Standard AS/NZS 1547:2000 On-site domestic wastewater management.

Effluent disposal fields should be sited with due consideration to the overall landscape and the individual characteristics of the property. Some guidance is provided. In particular, effluent fields should be located downslope of the building, away from stormwater, or *grey water*, discharge areas and where there is minimal potential for downstream pollution. Set backs and buffer distances vary from state to state and local requirements should be adhered to. All systems require regular maintenance and inspection. Efficient operation of the system must be a priority for property owners/occupiers to ensure safe and sustainable communities. Responsibility for maintenance rests with owners.

SURFACE WATER DRAINAGE

Attention to on-site surface water management is also important. Runoff from developments, including buildings, decks, access tracks and hardstand areas should be collected and discharged away from the development and other effluent disposal fields. Particular care must be given to the design of overflows on water tanks, as this is often overlooked. Discharge from any development should be spread out as much as possible, unless it can be directed to an existing natural water course. Ponding of water on hillsides and the concentration of water flows on slopes must be avoided.

It is recommended that a specific drainage plan and strategy should be developed in conjunction with the effluent disposal system for sites with a high potential for slope instability. Maintenance of the surface water drainage system is as important as maintenance of the effluent disposal system and again the responsibility rests with owners.

AUSTRALIAN GEOGUIDE LR9 (EFFLUENT DISPOSAL)

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.