

OpenSource GIS

Case Study 1: Jamberoo

- Planning for future of Jamberoo
- Town meeting: 120 residents
- GIS data presented to illustrate physical limitations to development in Jamberoo.

- "Gave a good visual overview of issues to be considered in planning"
- "Extremely useful way to explain all the issues together"
- "This is an excellent tool which helps the layman better understand large scale complex issues"

(a) Active Farming Land

Focus groups to discuss issues in

Used GIS to map information that was

more detail

unavailable

"We felt as though we had an input to what was going to happen in Jamberoo"

"It was a good way to see feedback"

"This is a must for the proper planning for the future of Jamberoo to allow Council to have the thoughts and feelings of the community"

またし

 3 days of presentations

Role of GIS: To present a range of planning related information in a visual format to assist the decisionmaking process.

- Problems with GIS data provided by Kiama Council:
- No metadata;
- Attribute tables were 'scrambled';
- Incomplete vegetation mapping;
- No land use data available.

Presenters invited to request maps for inclusion in presentation to Panel;

• Additional data requested, eg dairy farm land, urban growth areas, viewshed mapping.

- 2 days of deliberations;
- GIS projected on to a screen;
- Relevant GIS data displayed as requested;
- Panel members created maps to support their case

Evaluation

- · GIS easy to understand;
- 'Empowerment' dependent on Panel facilitator;
- GIS impacted on planning decisions;
- Visualisation in group decision-making;
- Ability to assess several issues in one location simultaneously;

Case Study 3: Landcare Illawarra Community GIS

- Represents "bottom-up" approach to providing access to GIS.
- Landcare Illawarra members sought access to GIS;
- Funding provided by Southern Rivers CMA;
- Training provided by me!

会長が	Evaluation
	 Participants felt 'empowered'; GIS would impact on project planning; Comfortable with the software and data; Ability to input data Basic data queries Create their own maps

Case Study 4: Lake Macquarie Wetlands Climate Change Assessment

Project aims:

- 1. Inventory of wetlands
- 2. Predict impacts of SLR on wetlands
- 3. Assess capacity of wetlands to retreat
- 4. Management recommendations

- Wetlands defined as inundation vegetation communities and can be grouped into forested, freshwater and saline
- Many wetlands in Lake Mac LGA fringe the lake and are very low lying
- NSW Govt adopted SLR projections of 40 cm by 2050 and 90 cm by 2100
- There is very high potential risk of SLR impacts to low-lying wetlands

Can wetlands retreat from rising sea levels or will we see "coastal squeeze"?

Identified all areas of potential retreat as:

- non-built environments (e.g. open space, enviro protection, rural) on undisturbed soils OR
- area zoned other than above that have remaining vegetation and undisturbed soils

All other areas classed as having no potential for retreat

	Conclusions
あると	 Visualisation tool Decision-making tool Interactive Scenario building etc