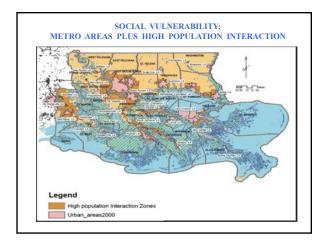
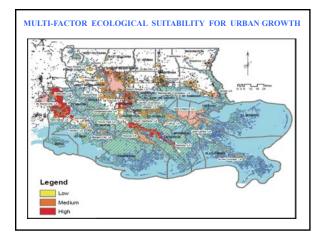
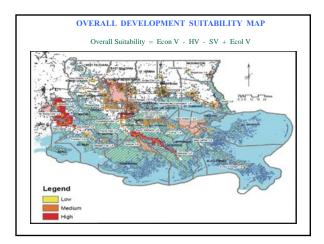
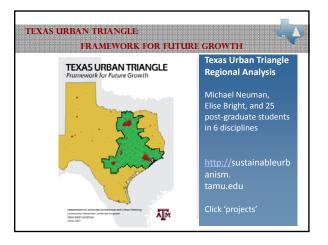
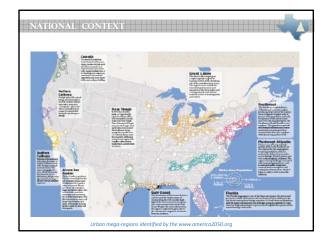

32,000 KM OF PIPELINES IN COASTAL LOUISIANA

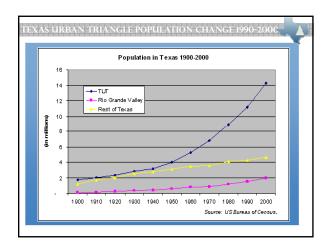

38,000 KM OF CHANNELS IN COASTAL LOUISIANA

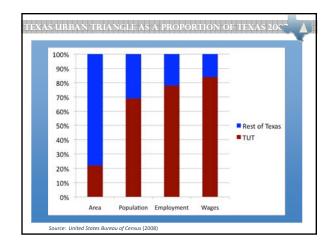

ONE FOOT OF STORM SURGE IS BUFFERED BY FOUR KM OF COASTAL MARSHLAND


PIPES AND CANALS IMPAIR THE FUNCTIONAL INTEGRITY OF WETLANDS TO BUFFER LAND AND CITIES FROM A CYCLONE STORM SURGE



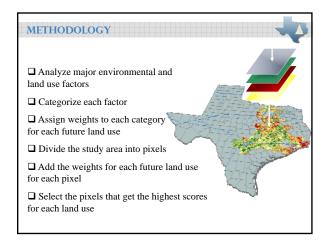



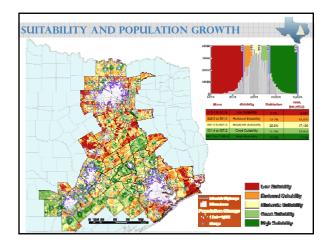



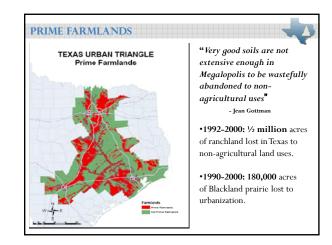



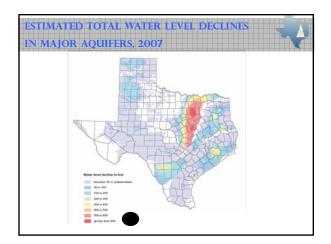


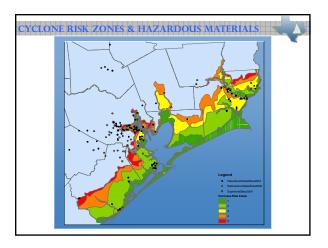


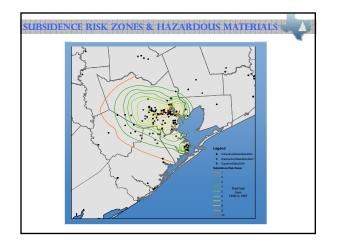



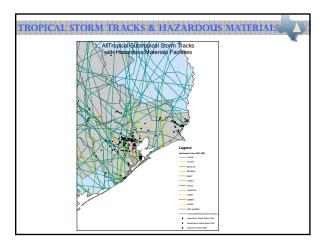



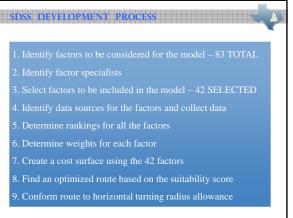



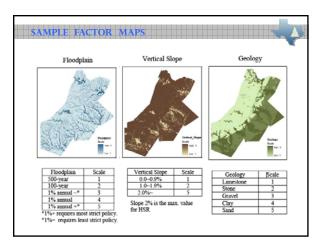



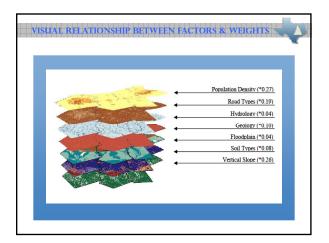



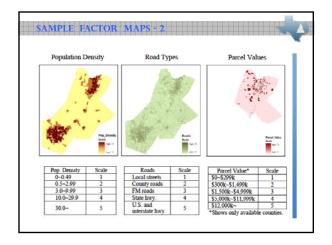


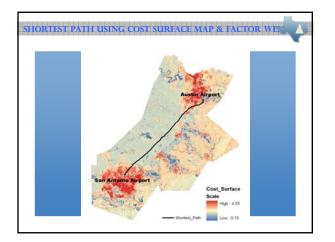



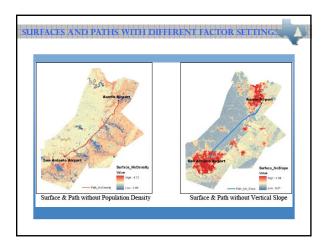


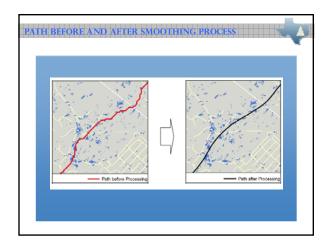



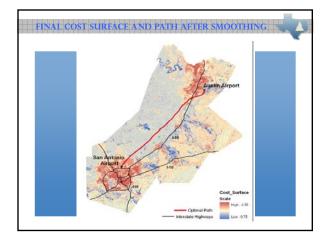



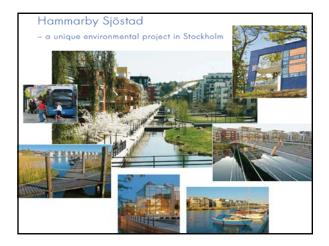


|            | Density | Slope | Roads | Hydrology | Floodplain | Geology | Soils | Eigen<br>Vector | %     |
|------------|---------|-------|-------|-----------|------------|---------|-------|-----------------|-------|
| Density    | 0.33    | 0.40  | 0.29  | 0.24      | 0.20       | 0.20    | 0.23  | 0.27            | 29.01 |
| Slope      | 0.22    | 0.27  | 0.43  | 0.24      | 0.16       | 0.23    | 0.23  | 0.26            | 27.0% |
|            | 0.17    | 0.09  | 0.14  | 0.24      | 0.18       | 0.23    | 0.29  | 0.19            | 19.0% |
| Hydrology  | 0.07    | 0.05  | 0.03  | 0.05      | 0.08       | 0.02    | 0.02  | 0.04            | 5.0%  |
| Floodplain | 0.07    | 0.07  | 0.03  | 0.02      | 0.04       | 0.02    | 0.02  | 0.04            | 4.05  |
| Geology    | 0.11    | 0.08  | 0.04  | 0.17      | 0.16       | 0.07    | 0.09  | 0.10            | 9.01  |
| Soils      | 0.08    | 0.07  | 0.03  | 0.17      | 0.14       | 0.04    | 0.06  | 0.08            | 8.0%  |
| SUM        | 1.04    | 1.02  | 0.99  | 1.15      | 0.96       | 0.80    | 0.94  | 1.00            | 100%  |





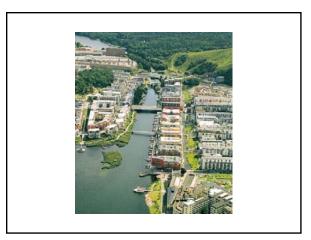





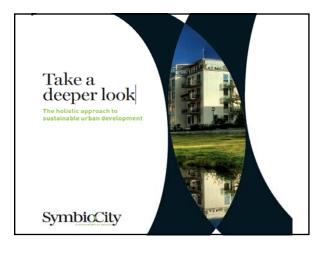



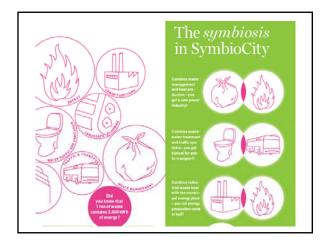


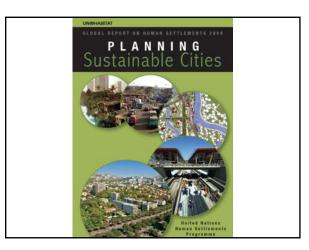

| The analytical expression for the radius of curvature, TR, for a curve f(x) is<br>$TR = \frac{(1 + d_x f^2)^{3/2}}{ d_{x,x} f }$ In order to interpolate a general sequence of location points in two dimensions, a parameter representation is required: [f] = (x[1], y[1]). Here f[1] represents a curve that passes through all the points. The points are independent of each other, so only three points will be considered at a time.<br>To interpolate a curve that passes through three arbitrarily points, the Lagrange polynomial is used:<br>P[x] = f_0 L_{3,0}+f_1 L_{3,1}+f_2 L_{3,2} will be used for x[t] and y[t].<br>Given the curve C={x[t]x[t]}, then the radius of curvature] is $r = \frac{1}{x[t]} = \frac{[c^{(x,p)+1}_{x(x)}]}{[c^{(x,p)+1}_{x(x)}]}$ and the | RADIUS OF CURVATURE FORMULAE FOR SMOOTHING                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $TR = \frac{(1 + d_x f^2)^{3/2}}{ d_{x,x} f' }$ In order to interpolate a general sequence of location points in two dimensions, a parameter representation is required: $f(t) = (x(t), y(t))$ . Here $f(t)$ represents a curve that passes through all the points. The points are independent of each other, so only three points will be considered at a time.<br>To interpolate a curve that passes through three arbitrarily points, the Lagrange polynomial is used:<br>$P[x] = f_0 L_{3,0} + f_1 L_{3,1} + f_2 L_{4,2}$ will be used for $x[t]$ and $y[t]$ .<br>Given the curve $C=\{x[t], x[t]\}$ , then the radius of curvature is $r = \frac{1}{x(t)} = \frac{(r^4, r^2)^{1/2}}{2r^2 r^2 r^2}$ and the                                                                       |                                                                                                                                                                                                      |
| In order to interpolate a general sequence of location points in two dimensions, a parameter representation is required: $f(t) = (x(t), y(t))$ . Here $f(t)$ represents a curve that passes through all the points. The points are independent of each other, so only three points will be considered at a time.<br>To interpolate a curve that passes through three arbitrarily points, the Lagrange polynomial is used:<br>$P(x) = f_0 L_{3,0} + f_1 L_{3,1} + f_2 L_{3,2}$ will be used for $x(t)$ and $y(t)$ .<br>Given the curve $C=\{x(t), x(t)\}$ , then the radius of curvature is $r = \frac{1}{x(t)} = \frac{(c^*, r^0)^{-1}}{(x(t)^*, y(t))}$ and the                                                                                                                      | The analytical expression for the radius of curvature, TR, for a curve f(x) is                                                                                                                       |
| representation is required: $f(t) = (x[t], y[t])$ . Here $f(t)$ represents a curve that passes through all the<br>points. The points are independent of each other, so only three points will be considered at a time.<br>To interpolate a curve that passes through three arbitrarily points, the Lagrange<br>polynomial is used:<br>$P[x] = f_0 L_{3,0}+f_1 L_{3,1}+f_2 L_{4,2}$ will be used for $x[t]$ and $y[t]$ .<br>Given the curve $C=\{x[t], x[t]\}$ , then the radius of curvature is $r = \frac{1}{x[t]} = \frac{(c^*, r^0)^{1/2}}{x[t]^*, y[t]}$ and the                                                                                                                                                                                                                  | $TR = \frac{(1 + d_x f^2)^{3/2}}{ d_{xx} f }$                                                                                                                                                        |
| polynomial is used:<br>$P[\mathbf{x}] = f_0 L_{3,0} + f_1 L_{3,1} + f_2 L_{3,2} \text{ will be used for } \mathbf{x}[t] \text{ and } \mathbf{y}[t].$ Given the curve C={x[t],x[t]}, then the radius of curvature is $r' = \frac{1}{ \mathbf{x} ^2} = \frac{ (c^2 + c^2) ^2}{ \mathbf{x} ^2 - \mathbf{y} ^2 ^2}$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                               | representation is required: f[t] = (x[t], y[t]). Here f[t] represents a curve that passes through all the                                                                                            |
| Given the curve C={x[t],x[t]}, then the radius of curvature is $r = \frac{1}{2(2)} = \frac{(r^2 + y^2)^{22}}{(r^2 + y^2)^{22}}$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |
| Given the curve C={x[t],x[t]}, then the radius of curvature is $r = \frac{1}{k(0)} = \frac{(k^2 + y^2)^{12}}{(x'y - y'x')}$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |
| center of the circle is $(x_{cr}, y_{t}) = (x, y) + r(y^{*}, -x^{*}) / \sqrt{x^{*^{2}} + y^{*^{2}}}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Given the curve C={x[t],x[t]}, then the radius of curvature is $r = \frac{1}{2(0)} = \frac{1}{2(y-y^2)^2}$ and the center of the circle is $[x_0, y_1] = [x, y] + r[y^1, -x^2] / \sqrt{x^2 + y^2}$ . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |

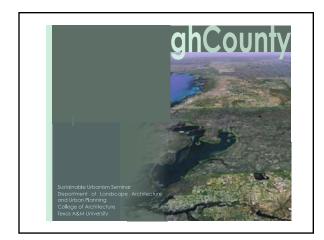




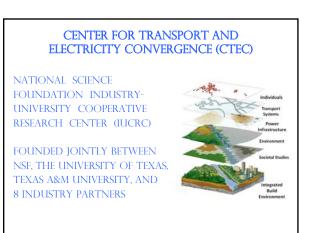



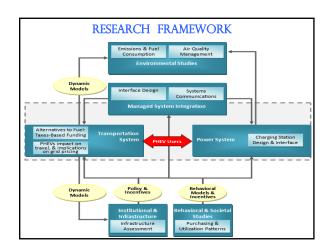



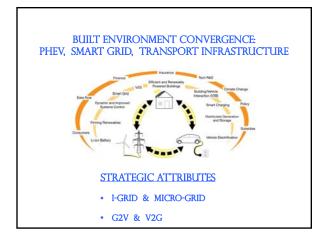




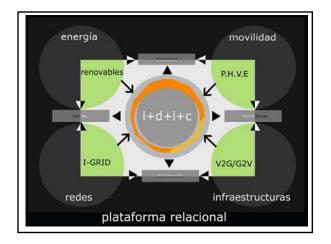



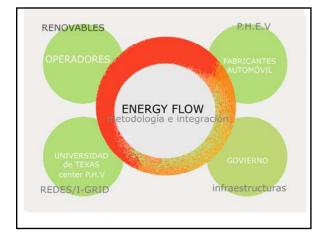




| TAMPA, FLORIDA              | INDICATOR GROUP                           | SOCIAL | ENVIRON-<br>MENTAL | ECONOMIC |
|-----------------------------|-------------------------------------------|--------|--------------------|----------|
| GENERAL PLAN                | Automobile Emissions                      |        | •                  |          |
| SUSTAINABILITYAUDIT         | Public Transportation<br>and Connectivity | •      |                    | •        |
| babininabilitititabili      | Infrastructure                            | •      |                    | •        |
|                             | Green Infrastructure                      | •      | •                  |          |
|                             | Energy Consumption                        |        | •                  | •        |
|                             | Wetlands                                  |        | •                  |          |
| THE AUDIT ANALYZES          | Air Quality                               | •      | •                  |          |
|                             | Habitat                                   |        | •                  |          |
| AND ASSESSES THE GOALS,     | Biodiversity                              |        | •                  |          |
| OBJECTIVES, AND POLICIES OF | Consumption &<br>Production Patterns      |        | •                  | •        |
| THE CITY OF TAMPA'S         | Storm Water<br>Management                 |        |                    | •        |
| GENERAL PLAN USING          | Water Supply                              | •      |                    | •        |
|                             | Water Quality                             | •      | •                  |          |
| MEASURABLE & REPLICABLE     | Community Programs                        | •      |                    |          |
| SUSTAINABILITY INDICATORS   | Public Health                             | •      |                    |          |
|                             | Walkability                               | •      |                    | •        |
|                             | Street Pattern &<br>Livability            | •      |                    | •        |
|                             | Social Equity                             | •      |                    |          |
|                             | Economic Sustainability                   |        |                    | •        |
|                             | Coastal Habitats                          |        |                    |          |

| CITY OF TAMPA OVERALL<br>SUSTAINABILITY AUDIT SCORES |                   |                                                                                                                                                                                   |  |  |  |
|------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| INDICATOR GROUP                                      | AVERAGE<br>SCORES | GENERAL COMMENTS                                                                                                                                                                  |  |  |  |
| Storm Water<br>Management                            | 2.1               | Tampa has adopted development regulations to manage the<br>impacts on storm water drainage and the protection of wetlands.<br>Plan would benefit from measureable objectives.     |  |  |  |
| Water Supply                                         | 1.9               | Water quantity and conservation is highlighted strongly. More<br>specific indicators could be covered: Total Water Resources<br>Used, Water Resources, Water Rights Held by Tampa |  |  |  |
| Water Quality                                        | 2.3               | The plan successfully identifies the importance of water quality.<br>There should be more quantitative indicators about specific<br>chemicals to ensure water safety.             |  |  |  |
| Public Health                                        | 2.0               | Access to medical care, access to recreation and public<br>space facilities, physical activity-fitness / wellness, and<br>access to community gardens & farmers' markets.         |  |  |  |
| Active Transport                                     | 2.6               | The Plan for Tampa did a fine job identifying walking and biking<br>indicators to enhance livability and promote sustainability.                                                  |  |  |  |
| Street Pattern &<br>Livability                       | 1.6               | Plan covers safety, street connectivity, street<br>landscaping and seating, street ornamentation, street<br>typology, building façade design, and frequency of use.               |  |  |  |
| Social Equity                                        | 2.0               | Specific criteria can be developed for a range of social issues.                                                                                                                  |  |  |  |







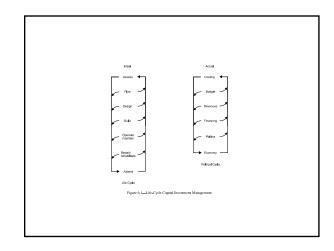


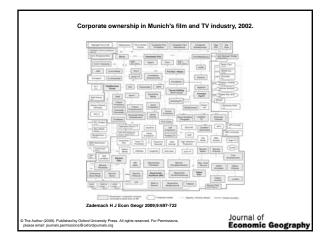


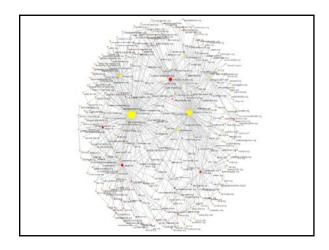


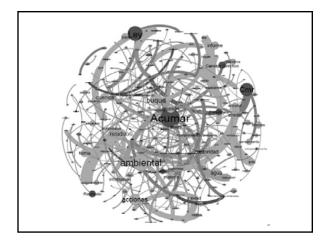


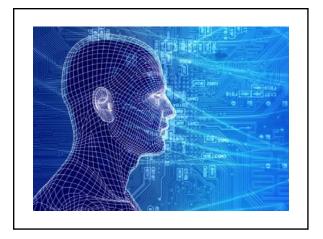




LIFE CYCLE SUSTAINABILITY  
REPLENISH 
$$\geq$$
 WITHDRAWAL  


$$\sum_{k=1}^{z_{i}} \frac{dw_{k}}{dt} \geq \sum_{j=1}^{z_{0}} \frac{dw_{j}}{dt}$$


$$\frac{dw_{aquifer\_input}}{dt} \geq \frac{dw_{aquifer\_withdrawal}}{dt}$$











